General energy decay for wave equation with space-time potential and time delay in Rn

In this paper, we consider the following wave equation u tt - Δ u + a 0 b ( t , x ) u t + a 1 b ( t , x ) u t ( t - τ ) + | u | p - 1 u = 0 , t > 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n u t ( t - τ , x ) = h 0 ( t - τ , x ) , x ∈ R n , 0 < t < τ , with space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Afrika mathematica 2023, Vol.34 (4)
Hauptverfasser: Ogbiyele, Paul A., Arawomo, Peter O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Afrika mathematica
container_volume 34
creator Ogbiyele, Paul A.
Arawomo, Peter O.
description In this paper, we consider the following wave equation u tt - Δ u + a 0 b ( t , x ) u t + a 1 b ( t , x ) u t ( t - τ ) + | u | p - 1 u = 0 , t > 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n u t ( t - τ , x ) = h 0 ( t - τ , x ) , x ∈ R n , 0 < t < τ , with space time dependent potential and a time delay in the internal feedback. Under appropriate conditions on the damping coefficients b and the constants a 0 , a 1 , we establish a general energy decay result of the solution where the initial data have compact support.
doi_str_mv 10.1007/s13370-023-01120-1
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2882889887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882889887</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-6ce2e106c4b6b4aa8f1c63613bea8e8e0374c64bc6b6727400b32fc8ee3f18e63</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGr_gKeA5-hMkibpUYrWQkEQew7ZdLZuqdnt7tbSf2_aCg4DD4b35sHH2D3CIwLYpw6VsiBAKgGIEgResYHECQhrjLtmAwSUYqJhfMtGXbeBPNqgGasBW84oURu2_CTrI19RDEde1i0_hB_itNuHvqoTP1T9F--aEEn01Tfxpu4p9VUOhrTi59OKtjlaJf6R7thNGbYdjf50yJavL5_TN7F4n82nzwvR4Nj2wkSShGCiLkyhQ3AlRqMMqoKCI0egrI5GF9EUxkqrAQoly-iIVImOjBqyh8vfpq13e-p6v6n3bcqVXjqXd-KczS51cXVNW6U1tf8uBH9C6C8IfUbozwg9ql_1DGO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882889887</pqid></control><display><type>article</type><title>General energy decay for wave equation with space-time potential and time delay in Rn</title><source>SpringerLink Journals</source><creator>Ogbiyele, Paul A. ; Arawomo, Peter O.</creator><creatorcontrib>Ogbiyele, Paul A. ; Arawomo, Peter O.</creatorcontrib><description>In this paper, we consider the following wave equation u tt - Δ u + a 0 b ( t , x ) u t + a 1 b ( t , x ) u t ( t - τ ) + | u | p - 1 u = 0 , t &gt; 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n u t ( t - τ , x ) = h 0 ( t - τ , x ) , x ∈ R n , 0 &lt; t &lt; τ , with space time dependent potential and a time delay in the internal feedback. Under appropriate conditions on the damping coefficients b and the constants a 0 , a 1 , we establish a general energy decay result of the solution where the initial data have compact support.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-023-01120-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Damping ; Decay ; History of Mathematical Sciences ; Mathematics ; Mathematics and Statistics ; Mathematics Education ; Time dependence ; Time lag ; Wave equations</subject><ispartof>Afrika mathematica, 2023, Vol.34 (4)</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1612-0069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13370-023-01120-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13370-023-01120-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ogbiyele, Paul A.</creatorcontrib><creatorcontrib>Arawomo, Peter O.</creatorcontrib><title>General energy decay for wave equation with space-time potential and time delay in Rn</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>In this paper, we consider the following wave equation u tt - Δ u + a 0 b ( t , x ) u t + a 1 b ( t , x ) u t ( t - τ ) + | u | p - 1 u = 0 , t &gt; 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n u t ( t - τ , x ) = h 0 ( t - τ , x ) , x ∈ R n , 0 &lt; t &lt; τ , with space time dependent potential and a time delay in the internal feedback. Under appropriate conditions on the damping coefficients b and the constants a 0 , a 1 , we establish a general energy decay result of the solution where the initial data have compact support.</description><subject>Applications of Mathematics</subject><subject>Damping</subject><subject>Decay</subject><subject>History of Mathematical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><subject>Time dependence</subject><subject>Time lag</subject><subject>Wave equations</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEFLAzEQhYMoWGr_gKeA5-hMkibpUYrWQkEQew7ZdLZuqdnt7tbSf2_aCg4DD4b35sHH2D3CIwLYpw6VsiBAKgGIEgResYHECQhrjLtmAwSUYqJhfMtGXbeBPNqgGasBW84oURu2_CTrI19RDEde1i0_hB_itNuHvqoTP1T9F--aEEn01Tfxpu4p9VUOhrTi59OKtjlaJf6R7thNGbYdjf50yJavL5_TN7F4n82nzwvR4Nj2wkSShGCiLkyhQ3AlRqMMqoKCI0egrI5GF9EUxkqrAQoly-iIVImOjBqyh8vfpq13e-p6v6n3bcqVXjqXd-KczS51cXVNW6U1tf8uBH9C6C8IfUbozwg9ql_1DGO0</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ogbiyele, Paul A.</creator><creator>Arawomo, Peter O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0003-1612-0069</orcidid></search><sort><creationdate>2023</creationdate><title>General energy decay for wave equation with space-time potential and time delay in Rn</title><author>Ogbiyele, Paul A. ; Arawomo, Peter O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-6ce2e106c4b6b4aa8f1c63613bea8e8e0374c64bc6b6727400b32fc8ee3f18e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Damping</topic><topic>Decay</topic><topic>History of Mathematical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><topic>Time dependence</topic><topic>Time lag</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogbiyele, Paul A.</creatorcontrib><creatorcontrib>Arawomo, Peter O.</creatorcontrib><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogbiyele, Paul A.</au><au>Arawomo, Peter O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General energy decay for wave equation with space-time potential and time delay in Rn</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2023</date><risdate>2023</risdate><volume>34</volume><issue>4</issue><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>In this paper, we consider the following wave equation u tt - Δ u + a 0 b ( t , x ) u t + a 1 b ( t , x ) u t ( t - τ ) + | u | p - 1 u = 0 , t &gt; 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n u t ( t - τ , x ) = h 0 ( t - τ , x ) , x ∈ R n , 0 &lt; t &lt; τ , with space time dependent potential and a time delay in the internal feedback. Under appropriate conditions on the damping coefficients b and the constants a 0 , a 1 , we establish a general energy decay result of the solution where the initial data have compact support.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-023-01120-1</doi><orcidid>https://orcid.org/0000-0003-1612-0069</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1012-9405
ispartof Afrika mathematica, 2023, Vol.34 (4)
issn 1012-9405
2190-7668
language eng
recordid cdi_proquest_journals_2882889887
source SpringerLink Journals
subjects Applications of Mathematics
Damping
Decay
History of Mathematical Sciences
Mathematics
Mathematics and Statistics
Mathematics Education
Time dependence
Time lag
Wave equations
title General energy decay for wave equation with space-time potential and time delay in Rn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20energy%20decay%20for%20wave%20equation%20with%20space-time%20potential%20and%20time%20delay%20in%20Rn&rft.jtitle=Afrika%20mathematica&rft.au=Ogbiyele,%20Paul%20A.&rft.date=2023&rft.volume=34&rft.issue=4&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-023-01120-1&rft_dat=%3Cproquest_sprin%3E2882889887%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882889887&rft_id=info:pmid/&rfr_iscdi=true