Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System
A two-dimensional mathematical model was developed to simulate naphtha reforming in a series of three industrial continuous catalytic regeneration (CCR) reactors. Discretization of the resulting partial differential equations (PDEs) in the vertical direction and a coordinate transformation in the ra...
Gespeichert in:
Veröffentlicht in: | Processes 2023-10, Vol.11 (10), p.2838 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 2838 |
container_title | Processes |
container_volume | 11 |
creator | Atarianshandiz, Mahmud McAuley, Kimberley B. Shahsavand, Akbar |
description | A two-dimensional mathematical model was developed to simulate naphtha reforming in a series of three industrial continuous catalytic regeneration (CCR) reactors. Discretization of the resulting partial differential equations (PDEs) in the vertical direction and a coordinate transformation in the radial direction were performed to make the model solvable using Aspen Custom Modeler. A sensitivity-based parameter subset selection method was employed to identify the most influential parameters within the model. Tuning of 8 out of 180 parameters was used to ensure that model predictions match experimental data from one steady-state run. The updated parameter values improved the model fit to the data, reducing the weighted least-squares objective function for parameter estimation by 73%. The proposed model was used to predict reactor temperatures, catalyst coke weight fraction at the exit of the third reactor, and benzene flowrate from the outlet of the third reactor. The simulation results demonstrated a good agreement between the simulated values and the industrial measurements. Finally, the reactor model was utilized to explore the effects of changes in inlet temperatures and inlet level of catalyst deactivation, providing valuable insights for identifying desirable operational conditions that will improve the overall efficiency of the CCR process. |
doi_str_mv | 10.3390/pr11102838 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2882608925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772199663</galeid><sourcerecordid>A772199663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c6cb805dd0ccdc7750560a5f4712af8c20d0325c767ca7f87fb50d5a6dc069223</originalsourceid><addsrcrecordid>eNpNUclKBDEQbUTBQefiFwS8CaNZzNLHYXCDcUHHc1Nm0Wh3Mibpw_y9GUbQqkMVr957dXhNc0LwOWMtvlgnQgimiqm9ZkIplbNWErn_bz9spjl_4lotYYqLSfN1H43tfXhHEAx6ggSDLTah1Ri2oIsJLWIoPoxxzGgBBfpN8Ro923oatpTo0AOsP8oHIB-qC7oLZswleegrC3SpFi-bXOxw3Bw46LOd_s6j5vX6arW4nS0fb-4W8-VMM3ZZZlroN4W5MVhro6XkmAsM3F1KQsEpTbHBjHIthdQgnZLujWPDQRiNRUspO2pOd77rFL9Hm0v3GccU6suOKkUFVi3llXW-Y71DbzsfXCwJdG1jB69jsM5XfC4lJW0rBKuCs51Ap5hzsq5bJz9A2nQEd9sAur8A2A_SkXhV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882608925</pqid></control><display><type>article</type><title>Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Atarianshandiz, Mahmud ; McAuley, Kimberley B. ; Shahsavand, Akbar</creator><creatorcontrib>Atarianshandiz, Mahmud ; McAuley, Kimberley B. ; Shahsavand, Akbar</creatorcontrib><description>A two-dimensional mathematical model was developed to simulate naphtha reforming in a series of three industrial continuous catalytic regeneration (CCR) reactors. Discretization of the resulting partial differential equations (PDEs) in the vertical direction and a coordinate transformation in the radial direction were performed to make the model solvable using Aspen Custom Modeler. A sensitivity-based parameter subset selection method was employed to identify the most influential parameters within the model. Tuning of 8 out of 180 parameters was used to ensure that model predictions match experimental data from one steady-state run. The updated parameter values improved the model fit to the data, reducing the weighted least-squares objective function for parameter estimation by 73%. The proposed model was used to predict reactor temperatures, catalyst coke weight fraction at the exit of the third reactor, and benzene flowrate from the outlet of the third reactor. The simulation results demonstrated a good agreement between the simulated values and the industrial measurements. Finally, the reactor model was utilized to explore the effects of changes in inlet temperatures and inlet level of catalyst deactivation, providing valuable insights for identifying desirable operational conditions that will improve the overall efficiency of the CCR process.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11102838</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Benzene ; Catalysts ; Coordinate transformations ; Differential equations ; Mathematical models ; Naphtha ; Ordinary differential equations ; Parameter estimation ; Parameter identification ; Parameter sensitivity ; Partial differential equations ; Petroleum ; Reactors ; Refining ; Reforming ; Simulation ; Tuning ; Two dimensional models</subject><ispartof>Processes, 2023-10, Vol.11 (10), p.2838</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c6cb805dd0ccdc7750560a5f4712af8c20d0325c767ca7f87fb50d5a6dc069223</citedby><cites>FETCH-LOGICAL-c334t-c6cb805dd0ccdc7750560a5f4712af8c20d0325c767ca7f87fb50d5a6dc069223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Atarianshandiz, Mahmud</creatorcontrib><creatorcontrib>McAuley, Kimberley B.</creatorcontrib><creatorcontrib>Shahsavand, Akbar</creatorcontrib><title>Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System</title><title>Processes</title><description>A two-dimensional mathematical model was developed to simulate naphtha reforming in a series of three industrial continuous catalytic regeneration (CCR) reactors. Discretization of the resulting partial differential equations (PDEs) in the vertical direction and a coordinate transformation in the radial direction were performed to make the model solvable using Aspen Custom Modeler. A sensitivity-based parameter subset selection method was employed to identify the most influential parameters within the model. Tuning of 8 out of 180 parameters was used to ensure that model predictions match experimental data from one steady-state run. The updated parameter values improved the model fit to the data, reducing the weighted least-squares objective function for parameter estimation by 73%. The proposed model was used to predict reactor temperatures, catalyst coke weight fraction at the exit of the third reactor, and benzene flowrate from the outlet of the third reactor. The simulation results demonstrated a good agreement between the simulated values and the industrial measurements. Finally, the reactor model was utilized to explore the effects of changes in inlet temperatures and inlet level of catalyst deactivation, providing valuable insights for identifying desirable operational conditions that will improve the overall efficiency of the CCR process.</description><subject>Benzene</subject><subject>Catalysts</subject><subject>Coordinate transformations</subject><subject>Differential equations</subject><subject>Mathematical models</subject><subject>Naphtha</subject><subject>Ordinary differential equations</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Partial differential equations</subject><subject>Petroleum</subject><subject>Reactors</subject><subject>Refining</subject><subject>Reforming</subject><subject>Simulation</subject><subject>Tuning</subject><subject>Two dimensional models</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUclKBDEQbUTBQefiFwS8CaNZzNLHYXCDcUHHc1Nm0Wh3Mibpw_y9GUbQqkMVr957dXhNc0LwOWMtvlgnQgimiqm9ZkIplbNWErn_bz9spjl_4lotYYqLSfN1H43tfXhHEAx6ggSDLTah1Ri2oIsJLWIoPoxxzGgBBfpN8Ro923oatpTo0AOsP8oHIB-qC7oLZswleegrC3SpFi-bXOxw3Bw46LOd_s6j5vX6arW4nS0fb-4W8-VMM3ZZZlroN4W5MVhro6XkmAsM3F1KQsEpTbHBjHIthdQgnZLujWPDQRiNRUspO2pOd77rFL9Hm0v3GccU6suOKkUFVi3llXW-Y71DbzsfXCwJdG1jB69jsM5XfC4lJW0rBKuCs51Ap5hzsq5bJz9A2nQEd9sAur8A2A_SkXhV</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Atarianshandiz, Mahmud</creator><creator>McAuley, Kimberley B.</creator><creator>Shahsavand, Akbar</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20231001</creationdate><title>Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System</title><author>Atarianshandiz, Mahmud ; McAuley, Kimberley B. ; Shahsavand, Akbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c6cb805dd0ccdc7750560a5f4712af8c20d0325c767ca7f87fb50d5a6dc069223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benzene</topic><topic>Catalysts</topic><topic>Coordinate transformations</topic><topic>Differential equations</topic><topic>Mathematical models</topic><topic>Naphtha</topic><topic>Ordinary differential equations</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Partial differential equations</topic><topic>Petroleum</topic><topic>Reactors</topic><topic>Refining</topic><topic>Reforming</topic><topic>Simulation</topic><topic>Tuning</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atarianshandiz, Mahmud</creatorcontrib><creatorcontrib>McAuley, Kimberley B.</creatorcontrib><creatorcontrib>Shahsavand, Akbar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atarianshandiz, Mahmud</au><au>McAuley, Kimberley B.</au><au>Shahsavand, Akbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System</atitle><jtitle>Processes</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>11</volume><issue>10</issue><spage>2838</spage><pages>2838-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>A two-dimensional mathematical model was developed to simulate naphtha reforming in a series of three industrial continuous catalytic regeneration (CCR) reactors. Discretization of the resulting partial differential equations (PDEs) in the vertical direction and a coordinate transformation in the radial direction were performed to make the model solvable using Aspen Custom Modeler. A sensitivity-based parameter subset selection method was employed to identify the most influential parameters within the model. Tuning of 8 out of 180 parameters was used to ensure that model predictions match experimental data from one steady-state run. The updated parameter values improved the model fit to the data, reducing the weighted least-squares objective function for parameter estimation by 73%. The proposed model was used to predict reactor temperatures, catalyst coke weight fraction at the exit of the third reactor, and benzene flowrate from the outlet of the third reactor. The simulation results demonstrated a good agreement between the simulated values and the industrial measurements. Finally, the reactor model was utilized to explore the effects of changes in inlet temperatures and inlet level of catalyst deactivation, providing valuable insights for identifying desirable operational conditions that will improve the overall efficiency of the CCR process.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11102838</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-10, Vol.11 (10), p.2838 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2882608925 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Benzene Catalysts Coordinate transformations Differential equations Mathematical models Naphtha Ordinary differential equations Parameter estimation Parameter identification Parameter sensitivity Partial differential equations Petroleum Reactors Refining Reforming Simulation Tuning Two dimensional models |
title | Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Parameter%20Tuning%20for%20Continuous%20Catalytic%20Reforming%20of%20Naphtha%20in%20an%20Industrial%20Reactor%20System&rft.jtitle=Processes&rft.au=Atarianshandiz,%20Mahmud&rft.date=2023-10-01&rft.volume=11&rft.issue=10&rft.spage=2838&rft.pages=2838-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11102838&rft_dat=%3Cgale_proqu%3EA772199663%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882608925&rft_id=info:pmid/&rft_galeid=A772199663&rfr_iscdi=true |