Controlling all Degrees of Freedom of the Optical Coupling in Hybrid Quantum Photonics
Nanophotonic quantum devices can significantly boost light-matter interaction which is important for applications such as quantum networks. Reaching a high interaction strength between an optical transition of a spin system and a single mode of light is an essential step which demands precise contro...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lettner, Niklas Antoniuk, Lukas Ovvyan, Anna P Gehring, Helge Wendland, Daniel Agafonov, Viatcheslav N Pernice, Wolfram H P Kubanek, Alexander |
description | Nanophotonic quantum devices can significantly boost light-matter interaction which is important for applications such as quantum networks. Reaching a high interaction strength between an optical transition of a spin system and a single mode of light is an essential step which demands precise control over all degrees of freedom of the optical coupling. While current devices have reached a high accuracy of emitter positioning, the placement process remains overall statistically, reducing the device fabrication yield. Furthermore, not all degrees of freedom of the optical coupling can be controlled limiting the device performance. Here, we develop a hybrid approach based on negatively-charged silicon-vacancy center in nanodiamonds coupled to a mode of a Si\(_3\)N\(_4\)-photonic crystal cavity, where all terms of the coupling strength can be controlled individually. We use the frequency of coherent Rabi-oscillations and line-broadening as a measure of the device performance. This allows for iterative optimization of the position and the rotation of the dipole with respect to individual, preselected modes of light. Therefore, our work marks an important step for optimization of hybrid quantum photonics and enables to align device simulations with real device performance. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2882599220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882599220</sourcerecordid><originalsourceid>FETCH-proquest_journals_28825992203</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBasGuWri1xV0G0FdNRR8a5No9Ff9-DPqDVOXDOjHkYRZsg2SIumG_MEIYh7vYYx5HHbhkpq0lKoTqopIQD7zTnBqiF_C0NjR-1PYfTZEVdScjITd9dKCiedy0auLhKWTfCuSdLStRmxeZtJQ33f1yydX68ZkUwaXo4bmw5kNPqnUpMEozTFDGM_rtezSBA0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882599220</pqid></control><display><type>article</type><title>Controlling all Degrees of Freedom of the Optical Coupling in Hybrid Quantum Photonics</title><source>Free E- Journals</source><creator>Lettner, Niklas ; Antoniuk, Lukas ; Ovvyan, Anna P ; Gehring, Helge ; Wendland, Daniel ; Agafonov, Viatcheslav N ; Pernice, Wolfram H P ; Kubanek, Alexander</creator><creatorcontrib>Lettner, Niklas ; Antoniuk, Lukas ; Ovvyan, Anna P ; Gehring, Helge ; Wendland, Daniel ; Agafonov, Viatcheslav N ; Pernice, Wolfram H P ; Kubanek, Alexander</creatorcontrib><description>Nanophotonic quantum devices can significantly boost light-matter interaction which is important for applications such as quantum networks. Reaching a high interaction strength between an optical transition of a spin system and a single mode of light is an essential step which demands precise control over all degrees of freedom of the optical coupling. While current devices have reached a high accuracy of emitter positioning, the placement process remains overall statistically, reducing the device fabrication yield. Furthermore, not all degrees of freedom of the optical coupling can be controlled limiting the device performance. Here, we develop a hybrid approach based on negatively-charged silicon-vacancy center in nanodiamonds coupled to a mode of a Si\(_3\)N\(_4\)-photonic crystal cavity, where all terms of the coupling strength can be controlled individually. We use the frequency of coherent Rabi-oscillations and line-broadening as a measure of the device performance. This allows for iterative optimization of the position and the rotation of the dipole with respect to individual, preselected modes of light. Therefore, our work marks an important step for optimization of hybrid quantum photonics and enables to align device simulations with real device performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coupled modes ; Degrees of freedom ; Diamonds ; Dipoles ; Emitters ; Line broadening ; Nanostructure ; Optical coupling ; Optical transition ; Optimization ; Photonic crystals ; Photonics ; Silicon</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Lettner, Niklas</creatorcontrib><creatorcontrib>Antoniuk, Lukas</creatorcontrib><creatorcontrib>Ovvyan, Anna P</creatorcontrib><creatorcontrib>Gehring, Helge</creatorcontrib><creatorcontrib>Wendland, Daniel</creatorcontrib><creatorcontrib>Agafonov, Viatcheslav N</creatorcontrib><creatorcontrib>Pernice, Wolfram H P</creatorcontrib><creatorcontrib>Kubanek, Alexander</creatorcontrib><title>Controlling all Degrees of Freedom of the Optical Coupling in Hybrid Quantum Photonics</title><title>arXiv.org</title><description>Nanophotonic quantum devices can significantly boost light-matter interaction which is important for applications such as quantum networks. Reaching a high interaction strength between an optical transition of a spin system and a single mode of light is an essential step which demands precise control over all degrees of freedom of the optical coupling. While current devices have reached a high accuracy of emitter positioning, the placement process remains overall statistically, reducing the device fabrication yield. Furthermore, not all degrees of freedom of the optical coupling can be controlled limiting the device performance. Here, we develop a hybrid approach based on negatively-charged silicon-vacancy center in nanodiamonds coupled to a mode of a Si\(_3\)N\(_4\)-photonic crystal cavity, where all terms of the coupling strength can be controlled individually. We use the frequency of coherent Rabi-oscillations and line-broadening as a measure of the device performance. This allows for iterative optimization of the position and the rotation of the dipole with respect to individual, preselected modes of light. Therefore, our work marks an important step for optimization of hybrid quantum photonics and enables to align device simulations with real device performance.</description><subject>Coupled modes</subject><subject>Degrees of freedom</subject><subject>Diamonds</subject><subject>Dipoles</subject><subject>Emitters</subject><subject>Line broadening</subject><subject>Nanostructure</subject><subject>Optical coupling</subject><subject>Optical transition</subject><subject>Optimization</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Silicon</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBasGuWri1xV0G0FdNRR8a5No9Ff9-DPqDVOXDOjHkYRZsg2SIumG_MEIYh7vYYx5HHbhkpq0lKoTqopIQD7zTnBqiF_C0NjR-1PYfTZEVdScjITd9dKCiedy0auLhKWTfCuSdLStRmxeZtJQ33f1yydX68ZkUwaXo4bmw5kNPqnUpMEozTFDGM_rtezSBA0Q</recordid><startdate>20231026</startdate><enddate>20231026</enddate><creator>Lettner, Niklas</creator><creator>Antoniuk, Lukas</creator><creator>Ovvyan, Anna P</creator><creator>Gehring, Helge</creator><creator>Wendland, Daniel</creator><creator>Agafonov, Viatcheslav N</creator><creator>Pernice, Wolfram H P</creator><creator>Kubanek, Alexander</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231026</creationdate><title>Controlling all Degrees of Freedom of the Optical Coupling in Hybrid Quantum Photonics</title><author>Lettner, Niklas ; Antoniuk, Lukas ; Ovvyan, Anna P ; Gehring, Helge ; Wendland, Daniel ; Agafonov, Viatcheslav N ; Pernice, Wolfram H P ; Kubanek, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28825992203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coupled modes</topic><topic>Degrees of freedom</topic><topic>Diamonds</topic><topic>Dipoles</topic><topic>Emitters</topic><topic>Line broadening</topic><topic>Nanostructure</topic><topic>Optical coupling</topic><topic>Optical transition</topic><topic>Optimization</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Silicon</topic><toplevel>online_resources</toplevel><creatorcontrib>Lettner, Niklas</creatorcontrib><creatorcontrib>Antoniuk, Lukas</creatorcontrib><creatorcontrib>Ovvyan, Anna P</creatorcontrib><creatorcontrib>Gehring, Helge</creatorcontrib><creatorcontrib>Wendland, Daniel</creatorcontrib><creatorcontrib>Agafonov, Viatcheslav N</creatorcontrib><creatorcontrib>Pernice, Wolfram H P</creatorcontrib><creatorcontrib>Kubanek, Alexander</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lettner, Niklas</au><au>Antoniuk, Lukas</au><au>Ovvyan, Anna P</au><au>Gehring, Helge</au><au>Wendland, Daniel</au><au>Agafonov, Viatcheslav N</au><au>Pernice, Wolfram H P</au><au>Kubanek, Alexander</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Controlling all Degrees of Freedom of the Optical Coupling in Hybrid Quantum Photonics</atitle><jtitle>arXiv.org</jtitle><date>2023-10-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Nanophotonic quantum devices can significantly boost light-matter interaction which is important for applications such as quantum networks. Reaching a high interaction strength between an optical transition of a spin system and a single mode of light is an essential step which demands precise control over all degrees of freedom of the optical coupling. While current devices have reached a high accuracy of emitter positioning, the placement process remains overall statistically, reducing the device fabrication yield. Furthermore, not all degrees of freedom of the optical coupling can be controlled limiting the device performance. Here, we develop a hybrid approach based on negatively-charged silicon-vacancy center in nanodiamonds coupled to a mode of a Si\(_3\)N\(_4\)-photonic crystal cavity, where all terms of the coupling strength can be controlled individually. We use the frequency of coherent Rabi-oscillations and line-broadening as a measure of the device performance. This allows for iterative optimization of the position and the rotation of the dipole with respect to individual, preselected modes of light. Therefore, our work marks an important step for optimization of hybrid quantum photonics and enables to align device simulations with real device performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2882599220 |
source | Free E- Journals |
subjects | Coupled modes Degrees of freedom Diamonds Dipoles Emitters Line broadening Nanostructure Optical coupling Optical transition Optimization Photonic crystals Photonics Silicon |
title | Controlling all Degrees of Freedom of the Optical Coupling in Hybrid Quantum Photonics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Controlling%20all%20Degrees%20of%20Freedom%20of%20the%20Optical%20Coupling%20in%20Hybrid%20Quantum%20Photonics&rft.jtitle=arXiv.org&rft.au=Lettner,%20Niklas&rft.date=2023-10-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2882599220%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882599220&rft_id=info:pmid/&rfr_iscdi=true |