cuRobo: Parallelized Collision-Free Minimum-Jerk Robot Motion Generation

This paper explores the problem of collision-free motion generation for manipulators by formulating it as a global motion optimization problem. We develop a parallel optimization technique to solve this problem and demonstrate its effectiveness on massively parallel GPUs. We show that combining simp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Balakumar Sundaralingam, Siva Kumar Sastry Hari, Fishman, Adam, Garrett, Caelan, Karl Van Wyk, Blukis, Valts, Millane, Alexander, Oleynikova, Helen, Handa, Ankur, Ramos, Fabio, Ratliff, Nathan, Fox, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Balakumar Sundaralingam
Siva Kumar Sastry Hari
Fishman, Adam
Garrett, Caelan
Karl Van Wyk
Blukis, Valts
Millane, Alexander
Oleynikova, Helen
Handa, Ankur
Ramos, Fabio
Ratliff, Nathan
Fox, Dieter
description This paper explores the problem of collision-free motion generation for manipulators by formulating it as a global motion optimization problem. We develop a parallel optimization technique to solve this problem and demonstrate its effectiveness on massively parallel GPUs. We show that combining simple optimization techniques with many parallel seeds leads to solving difficult motion generation problems within 50ms on average, 60x faster than state-of-the-art (SOTA) trajectory optimization methods. We achieve SOTA performance by combining L-BFGS step direction estimation with a novel parallel noisy line search scheme and a particle-based optimization solver. To further aid trajectory optimization, we develop a parallel geometric planner that plans within 20ms and also introduce a collision-free IK solver that can solve over 7000 queries/s. We package our contributions into a state of the art GPU accelerated motion generation library, cuRobo and release it to enrich the robotics community. Additional details are available at https://curobo.org
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2882596828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882596828</sourcerecordid><originalsourceid>FETCH-proquest_journals_28825968283</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHgO1I2p0WuxFqEg4r1EXSE1TTRpLr7eFnyApxmYmZAEOF8xuQaYkTSENssyyDcgBE9IdYtnd3U7elJeGYNGf_BOC2eMDtpZVnpEWmuru9ixI_onHfee1q4fMj2gRa9GXZDpQ5mA6Y9zsiz3l6JiL-_eEUPftC56O6QGpASxzSVI_t_1BSpbO_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882596828</pqid></control><display><type>article</type><title>cuRobo: Parallelized Collision-Free Minimum-Jerk Robot Motion Generation</title><source>Free E- Journals</source><creator>Balakumar Sundaralingam ; Siva Kumar Sastry Hari ; Fishman, Adam ; Garrett, Caelan ; Karl Van Wyk ; Blukis, Valts ; Millane, Alexander ; Oleynikova, Helen ; Handa, Ankur ; Ramos, Fabio ; Ratliff, Nathan ; Fox, Dieter</creator><creatorcontrib>Balakumar Sundaralingam ; Siva Kumar Sastry Hari ; Fishman, Adam ; Garrett, Caelan ; Karl Van Wyk ; Blukis, Valts ; Millane, Alexander ; Oleynikova, Helen ; Handa, Ankur ; Ramos, Fabio ; Ratliff, Nathan ; Fox, Dieter</creatorcontrib><description>This paper explores the problem of collision-free motion generation for manipulators by formulating it as a global motion optimization problem. We develop a parallel optimization technique to solve this problem and demonstrate its effectiveness on massively parallel GPUs. We show that combining simple optimization techniques with many parallel seeds leads to solving difficult motion generation problems within 50ms on average, 60x faster than state-of-the-art (SOTA) trajectory optimization methods. We achieve SOTA performance by combining L-BFGS step direction estimation with a novel parallel noisy line search scheme and a particle-based optimization solver. To further aid trajectory optimization, we develop a parallel geometric planner that plans within 20ms and also introduce a collision-free IK solver that can solve over 7000 queries/s. We package our contributions into a state of the art GPU accelerated motion generation library, cuRobo and release it to enrich the robotics community. Additional details are available at https://curobo.org</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Collision avoidance ; Robot dynamics ; Robotics ; Solvers ; Trajectory optimization</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Balakumar Sundaralingam</creatorcontrib><creatorcontrib>Siva Kumar Sastry Hari</creatorcontrib><creatorcontrib>Fishman, Adam</creatorcontrib><creatorcontrib>Garrett, Caelan</creatorcontrib><creatorcontrib>Karl Van Wyk</creatorcontrib><creatorcontrib>Blukis, Valts</creatorcontrib><creatorcontrib>Millane, Alexander</creatorcontrib><creatorcontrib>Oleynikova, Helen</creatorcontrib><creatorcontrib>Handa, Ankur</creatorcontrib><creatorcontrib>Ramos, Fabio</creatorcontrib><creatorcontrib>Ratliff, Nathan</creatorcontrib><creatorcontrib>Fox, Dieter</creatorcontrib><title>cuRobo: Parallelized Collision-Free Minimum-Jerk Robot Motion Generation</title><title>arXiv.org</title><description>This paper explores the problem of collision-free motion generation for manipulators by formulating it as a global motion optimization problem. We develop a parallel optimization technique to solve this problem and demonstrate its effectiveness on massively parallel GPUs. We show that combining simple optimization techniques with many parallel seeds leads to solving difficult motion generation problems within 50ms on average, 60x faster than state-of-the-art (SOTA) trajectory optimization methods. We achieve SOTA performance by combining L-BFGS step direction estimation with a novel parallel noisy line search scheme and a particle-based optimization solver. To further aid trajectory optimization, we develop a parallel geometric planner that plans within 20ms and also introduce a collision-free IK solver that can solve over 7000 queries/s. We package our contributions into a state of the art GPU accelerated motion generation library, cuRobo and release it to enrich the robotics community. Additional details are available at https://curobo.org</description><subject>Collision avoidance</subject><subject>Robot dynamics</subject><subject>Robotics</subject><subject>Solvers</subject><subject>Trajectory optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHgO1I2p0WuxFqEg4r1EXSE1TTRpLr7eFnyApxmYmZAEOF8xuQaYkTSENssyyDcgBE9IdYtnd3U7elJeGYNGf_BOC2eMDtpZVnpEWmuru9ixI_onHfee1q4fMj2gRa9GXZDpQ5mA6Y9zsiz3l6JiL-_eEUPftC56O6QGpASxzSVI_t_1BSpbO_Y</recordid><startdate>20231103</startdate><enddate>20231103</enddate><creator>Balakumar Sundaralingam</creator><creator>Siva Kumar Sastry Hari</creator><creator>Fishman, Adam</creator><creator>Garrett, Caelan</creator><creator>Karl Van Wyk</creator><creator>Blukis, Valts</creator><creator>Millane, Alexander</creator><creator>Oleynikova, Helen</creator><creator>Handa, Ankur</creator><creator>Ramos, Fabio</creator><creator>Ratliff, Nathan</creator><creator>Fox, Dieter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231103</creationdate><title>cuRobo: Parallelized Collision-Free Minimum-Jerk Robot Motion Generation</title><author>Balakumar Sundaralingam ; Siva Kumar Sastry Hari ; Fishman, Adam ; Garrett, Caelan ; Karl Van Wyk ; Blukis, Valts ; Millane, Alexander ; Oleynikova, Helen ; Handa, Ankur ; Ramos, Fabio ; Ratliff, Nathan ; Fox, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28825968283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collision avoidance</topic><topic>Robot dynamics</topic><topic>Robotics</topic><topic>Solvers</topic><topic>Trajectory optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Balakumar Sundaralingam</creatorcontrib><creatorcontrib>Siva Kumar Sastry Hari</creatorcontrib><creatorcontrib>Fishman, Adam</creatorcontrib><creatorcontrib>Garrett, Caelan</creatorcontrib><creatorcontrib>Karl Van Wyk</creatorcontrib><creatorcontrib>Blukis, Valts</creatorcontrib><creatorcontrib>Millane, Alexander</creatorcontrib><creatorcontrib>Oleynikova, Helen</creatorcontrib><creatorcontrib>Handa, Ankur</creatorcontrib><creatorcontrib>Ramos, Fabio</creatorcontrib><creatorcontrib>Ratliff, Nathan</creatorcontrib><creatorcontrib>Fox, Dieter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakumar Sundaralingam</au><au>Siva Kumar Sastry Hari</au><au>Fishman, Adam</au><au>Garrett, Caelan</au><au>Karl Van Wyk</au><au>Blukis, Valts</au><au>Millane, Alexander</au><au>Oleynikova, Helen</au><au>Handa, Ankur</au><au>Ramos, Fabio</au><au>Ratliff, Nathan</au><au>Fox, Dieter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>cuRobo: Parallelized Collision-Free Minimum-Jerk Robot Motion Generation</atitle><jtitle>arXiv.org</jtitle><date>2023-11-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper explores the problem of collision-free motion generation for manipulators by formulating it as a global motion optimization problem. We develop a parallel optimization technique to solve this problem and demonstrate its effectiveness on massively parallel GPUs. We show that combining simple optimization techniques with many parallel seeds leads to solving difficult motion generation problems within 50ms on average, 60x faster than state-of-the-art (SOTA) trajectory optimization methods. We achieve SOTA performance by combining L-BFGS step direction estimation with a novel parallel noisy line search scheme and a particle-based optimization solver. To further aid trajectory optimization, we develop a parallel geometric planner that plans within 20ms and also introduce a collision-free IK solver that can solve over 7000 queries/s. We package our contributions into a state of the art GPU accelerated motion generation library, cuRobo and release it to enrich the robotics community. Additional details are available at https://curobo.org</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2882596828
source Free E- Journals
subjects Collision avoidance
Robot dynamics
Robotics
Solvers
Trajectory optimization
title cuRobo: Parallelized Collision-Free Minimum-Jerk Robot Motion Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=cuRobo:%20Parallelized%20Collision-Free%20Minimum-Jerk%20Robot%20Motion%20Generation&rft.jtitle=arXiv.org&rft.au=Balakumar%20Sundaralingam&rft.date=2023-11-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2882596828%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882596828&rft_id=info:pmid/&rfr_iscdi=true