Superposed CNN-RBN joint network-based gesture recognition system
The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currentl...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2869 |
creator | Meena, S. Divya Rao, Thoom Purna Chander Krishna, Kolluri Vamsi Chandra, Sandra Bharth Vyshnavi, Kolluri Krishna, Gajula Sruthi Sheela, J. |
description | The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currently various issues with gesture recognition, including as accuracy, real-time capability, and resilience. In order to access address aforementioned issues, this research proposes a gesture recognition network that combines CNN and RBM. It primarily employs a superposed network of numerous RBMs for unsupervised feature extraction, which is then merged with CNN supervised feature extraction. These characteristics are then blend to collocate them. This modelling findings suggest that the advance superposed network performs superior in detecting simple and complex backdrop gesture samples, that gesture sample detection in complex backgrounds still needs to be improved. |
doi_str_mv | 10.1063/5.0168203 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2882584472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882584472</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-9a0608d6ef58c9e1087ef86cfb8b1e2ba40ea2d04e88e53dce2276042c59075f3</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRsFYP_oOANyH13e_NsRa_oETwA7wtm-RNSbXZuLtB-u9taU9zmGHmYQi5pjCjoPidnAFVhgE_IRMqJc21ouqUTAAKkTPBv87JRYxrAFZobSZk_j4OGAYfsckWZZm_3ZfZ2nd9ynpMfz5855XbeyuMaQyYBaz9qu9S5_ssbmPCzSU5a91PxKujTsnn48PH4jlfvj69LObLfKCcp7xwoMA0Cltp6gIpGI2tUXVbmYoiq5wAdKwBgcag5E2NjGkFgtWyAC1bPiU3h94h-N9xh2PXfgz9btIyY5g0Qmi2S90eUrHukttj2iF0Gxe2loLdX2SlPV7E_wEsB1fh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2882584472</pqid></control><display><type>conference_proceeding</type><title>Superposed CNN-RBN joint network-based gesture recognition system</title><source>AIP Journals Complete</source><creator>Meena, S. Divya ; Rao, Thoom Purna Chander ; Krishna, Kolluri Vamsi ; Chandra, Sandra Bharth ; Vyshnavi, Kolluri ; Krishna, Gajula Sruthi ; Sheela, J.</creator><contributor>Reddy, B Damodhara ; Ferro, Paolo ; Babu, B. Sridhar ; Malasri, Siripong Pong ; Kumar, Kaushik ; Babu, Matam Mohan ; Vemanaboina, Harinadh</contributor><creatorcontrib>Meena, S. Divya ; Rao, Thoom Purna Chander ; Krishna, Kolluri Vamsi ; Chandra, Sandra Bharth ; Vyshnavi, Kolluri ; Krishna, Gajula Sruthi ; Sheela, J. ; Reddy, B Damodhara ; Ferro, Paolo ; Babu, B. Sridhar ; Malasri, Siripong Pong ; Kumar, Kaushik ; Babu, Matam Mohan ; Vemanaboina, Harinadh</creatorcontrib><description>The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currently various issues with gesture recognition, including as accuracy, real-time capability, and resilience. In order to access address aforementioned issues, this research proposes a gesture recognition network that combines CNN and RBM. It primarily employs a superposed network of numerous RBMs for unsupervised feature extraction, which is then merged with CNN supervised feature extraction. These characteristics are then blend to collocate them. This modelling findings suggest that the advance superposed network performs superior in detecting simple and complex backdrop gesture samples, that gesture sample detection in complex backgrounds still needs to be improved.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0168203</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Feature extraction ; Gesture recognition</subject><ispartof>AIP conference proceedings, 2023, Vol.2869 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0168203$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23911,23912,25120,27903,27904,76130</link.rule.ids></links><search><contributor>Reddy, B Damodhara</contributor><contributor>Ferro, Paolo</contributor><contributor>Babu, B. Sridhar</contributor><contributor>Malasri, Siripong Pong</contributor><contributor>Kumar, Kaushik</contributor><contributor>Babu, Matam Mohan</contributor><contributor>Vemanaboina, Harinadh</contributor><creatorcontrib>Meena, S. Divya</creatorcontrib><creatorcontrib>Rao, Thoom Purna Chander</creatorcontrib><creatorcontrib>Krishna, Kolluri Vamsi</creatorcontrib><creatorcontrib>Chandra, Sandra Bharth</creatorcontrib><creatorcontrib>Vyshnavi, Kolluri</creatorcontrib><creatorcontrib>Krishna, Gajula Sruthi</creatorcontrib><creatorcontrib>Sheela, J.</creatorcontrib><title>Superposed CNN-RBN joint network-based gesture recognition system</title><title>AIP conference proceedings</title><description>The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currently various issues with gesture recognition, including as accuracy, real-time capability, and resilience. In order to access address aforementioned issues, this research proposes a gesture recognition network that combines CNN and RBM. It primarily employs a superposed network of numerous RBMs for unsupervised feature extraction, which is then merged with CNN supervised feature extraction. These characteristics are then blend to collocate them. This modelling findings suggest that the advance superposed network performs superior in detecting simple and complex backdrop gesture samples, that gesture sample detection in complex backgrounds still needs to be improved.</description><subject>Feature extraction</subject><subject>Gesture recognition</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1Lw0AYhBdRsFYP_oOANyH13e_NsRa_oETwA7wtm-RNSbXZuLtB-u9taU9zmGHmYQi5pjCjoPidnAFVhgE_IRMqJc21ouqUTAAKkTPBv87JRYxrAFZobSZk_j4OGAYfsckWZZm_3ZfZ2nd9ynpMfz5855XbeyuMaQyYBaz9qu9S5_ssbmPCzSU5a91PxKujTsnn48PH4jlfvj69LObLfKCcp7xwoMA0Cltp6gIpGI2tUXVbmYoiq5wAdKwBgcag5E2NjGkFgtWyAC1bPiU3h94h-N9xh2PXfgz9btIyY5g0Qmi2S90eUrHukttj2iF0Gxe2loLdX2SlPV7E_wEsB1fh</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>Meena, S. Divya</creator><creator>Rao, Thoom Purna Chander</creator><creator>Krishna, Kolluri Vamsi</creator><creator>Chandra, Sandra Bharth</creator><creator>Vyshnavi, Kolluri</creator><creator>Krishna, Gajula Sruthi</creator><creator>Sheela, J.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231027</creationdate><title>Superposed CNN-RBN joint network-based gesture recognition system</title><author>Meena, S. Divya ; Rao, Thoom Purna Chander ; Krishna, Kolluri Vamsi ; Chandra, Sandra Bharth ; Vyshnavi, Kolluri ; Krishna, Gajula Sruthi ; Sheela, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-9a0608d6ef58c9e1087ef86cfb8b1e2ba40ea2d04e88e53dce2276042c59075f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Feature extraction</topic><topic>Gesture recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meena, S. Divya</creatorcontrib><creatorcontrib>Rao, Thoom Purna Chander</creatorcontrib><creatorcontrib>Krishna, Kolluri Vamsi</creatorcontrib><creatorcontrib>Chandra, Sandra Bharth</creatorcontrib><creatorcontrib>Vyshnavi, Kolluri</creatorcontrib><creatorcontrib>Krishna, Gajula Sruthi</creatorcontrib><creatorcontrib>Sheela, J.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena, S. Divya</au><au>Rao, Thoom Purna Chander</au><au>Krishna, Kolluri Vamsi</au><au>Chandra, Sandra Bharth</au><au>Vyshnavi, Kolluri</au><au>Krishna, Gajula Sruthi</au><au>Sheela, J.</au><au>Reddy, B Damodhara</au><au>Ferro, Paolo</au><au>Babu, B. Sridhar</au><au>Malasri, Siripong Pong</au><au>Kumar, Kaushik</au><au>Babu, Matam Mohan</au><au>Vemanaboina, Harinadh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Superposed CNN-RBN joint network-based gesture recognition system</atitle><btitle>AIP conference proceedings</btitle><date>2023-10-27</date><risdate>2023</risdate><volume>2869</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currently various issues with gesture recognition, including as accuracy, real-time capability, and resilience. In order to access address aforementioned issues, this research proposes a gesture recognition network that combines CNN and RBM. It primarily employs a superposed network of numerous RBMs for unsupervised feature extraction, which is then merged with CNN supervised feature extraction. These characteristics are then blend to collocate them. This modelling findings suggest that the advance superposed network performs superior in detecting simple and complex backdrop gesture samples, that gesture sample detection in complex backgrounds still needs to be improved.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0168203</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2869 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2882584472 |
source | AIP Journals Complete |
subjects | Feature extraction Gesture recognition |
title | Superposed CNN-RBN joint network-based gesture recognition system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Superposed%20CNN-RBN%20joint%20network-based%20gesture%20recognition%20system&rft.btitle=AIP%20conference%20proceedings&rft.au=Meena,%20S.%20Divya&rft.date=2023-10-27&rft.volume=2869&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0168203&rft_dat=%3Cproquest_scita%3E2882584472%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882584472&rft_id=info:pmid/&rfr_iscdi=true |