Superposed CNN-RBN joint network-based gesture recognition system

The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meena, S. Divya, Rao, Thoom Purna Chander, Krishna, Kolluri Vamsi, Chandra, Sandra Bharth, Vyshnavi, Kolluri, Krishna, Gajula Sruthi, Sheela, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2869
creator Meena, S. Divya
Rao, Thoom Purna Chander
Krishna, Kolluri Vamsi
Chandra, Sandra Bharth
Vyshnavi, Kolluri
Krishna, Gajula Sruthi
Sheela, J.
description The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currently various issues with gesture recognition, including as accuracy, real-time capability, and resilience. In order to access address aforementioned issues, this research proposes a gesture recognition network that combines CNN and RBM. It primarily employs a superposed network of numerous RBMs for unsupervised feature extraction, which is then merged with CNN supervised feature extraction. These characteristics are then blend to collocate them. This modelling findings suggest that the advance superposed network performs superior in detecting simple and complex backdrop gesture samples, that gesture sample detection in complex backgrounds still needs to be improved.
doi_str_mv 10.1063/5.0168203
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2882584472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882584472</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-9a0608d6ef58c9e1087ef86cfb8b1e2ba40ea2d04e88e53dce2276042c59075f3</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRsFYP_oOANyH13e_NsRa_oETwA7wtm-RNSbXZuLtB-u9taU9zmGHmYQi5pjCjoPidnAFVhgE_IRMqJc21ouqUTAAKkTPBv87JRYxrAFZobSZk_j4OGAYfsckWZZm_3ZfZ2nd9ynpMfz5855XbeyuMaQyYBaz9qu9S5_ssbmPCzSU5a91PxKujTsnn48PH4jlfvj69LObLfKCcp7xwoMA0Cltp6gIpGI2tUXVbmYoiq5wAdKwBgcag5E2NjGkFgtWyAC1bPiU3h94h-N9xh2PXfgz9btIyY5g0Qmi2S90eUrHukttj2iF0Gxe2loLdX2SlPV7E_wEsB1fh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2882584472</pqid></control><display><type>conference_proceeding</type><title>Superposed CNN-RBN joint network-based gesture recognition system</title><source>AIP Journals Complete</source><creator>Meena, S. Divya ; Rao, Thoom Purna Chander ; Krishna, Kolluri Vamsi ; Chandra, Sandra Bharth ; Vyshnavi, Kolluri ; Krishna, Gajula Sruthi ; Sheela, J.</creator><contributor>Reddy, B Damodhara ; Ferro, Paolo ; Babu, B. Sridhar ; Malasri, Siripong Pong ; Kumar, Kaushik ; Babu, Matam Mohan ; Vemanaboina, Harinadh</contributor><creatorcontrib>Meena, S. Divya ; Rao, Thoom Purna Chander ; Krishna, Kolluri Vamsi ; Chandra, Sandra Bharth ; Vyshnavi, Kolluri ; Krishna, Gajula Sruthi ; Sheela, J. ; Reddy, B Damodhara ; Ferro, Paolo ; Babu, B. Sridhar ; Malasri, Siripong Pong ; Kumar, Kaushik ; Babu, Matam Mohan ; Vemanaboina, Harinadh</creatorcontrib><description>The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currently various issues with gesture recognition, including as accuracy, real-time capability, and resilience. In order to access address aforementioned issues, this research proposes a gesture recognition network that combines CNN and RBM. It primarily employs a superposed network of numerous RBMs for unsupervised feature extraction, which is then merged with CNN supervised feature extraction. These characteristics are then blend to collocate them. This modelling findings suggest that the advance superposed network performs superior in detecting simple and complex backdrop gesture samples, that gesture sample detection in complex backgrounds still needs to be improved.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0168203</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Feature extraction ; Gesture recognition</subject><ispartof>AIP conference proceedings, 2023, Vol.2869 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0168203$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23911,23912,25120,27903,27904,76130</link.rule.ids></links><search><contributor>Reddy, B Damodhara</contributor><contributor>Ferro, Paolo</contributor><contributor>Babu, B. Sridhar</contributor><contributor>Malasri, Siripong Pong</contributor><contributor>Kumar, Kaushik</contributor><contributor>Babu, Matam Mohan</contributor><contributor>Vemanaboina, Harinadh</contributor><creatorcontrib>Meena, S. Divya</creatorcontrib><creatorcontrib>Rao, Thoom Purna Chander</creatorcontrib><creatorcontrib>Krishna, Kolluri Vamsi</creatorcontrib><creatorcontrib>Chandra, Sandra Bharth</creatorcontrib><creatorcontrib>Vyshnavi, Kolluri</creatorcontrib><creatorcontrib>Krishna, Gajula Sruthi</creatorcontrib><creatorcontrib>Sheela, J.</creatorcontrib><title>Superposed CNN-RBN joint network-based gesture recognition system</title><title>AIP conference proceedings</title><description>The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currently various issues with gesture recognition, including as accuracy, real-time capability, and resilience. In order to access address aforementioned issues, this research proposes a gesture recognition network that combines CNN and RBM. It primarily employs a superposed network of numerous RBMs for unsupervised feature extraction, which is then merged with CNN supervised feature extraction. These characteristics are then blend to collocate them. This modelling findings suggest that the advance superposed network performs superior in detecting simple and complex backdrop gesture samples, that gesture sample detection in complex backgrounds still needs to be improved.</description><subject>Feature extraction</subject><subject>Gesture recognition</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1Lw0AYhBdRsFYP_oOANyH13e_NsRa_oETwA7wtm-RNSbXZuLtB-u9taU9zmGHmYQi5pjCjoPidnAFVhgE_IRMqJc21ouqUTAAKkTPBv87JRYxrAFZobSZk_j4OGAYfsckWZZm_3ZfZ2nd9ynpMfz5855XbeyuMaQyYBaz9qu9S5_ssbmPCzSU5a91PxKujTsnn48PH4jlfvj69LObLfKCcp7xwoMA0Cltp6gIpGI2tUXVbmYoiq5wAdKwBgcag5E2NjGkFgtWyAC1bPiU3h94h-N9xh2PXfgz9btIyY5g0Qmi2S90eUrHukttj2iF0Gxe2loLdX2SlPV7E_wEsB1fh</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>Meena, S. Divya</creator><creator>Rao, Thoom Purna Chander</creator><creator>Krishna, Kolluri Vamsi</creator><creator>Chandra, Sandra Bharth</creator><creator>Vyshnavi, Kolluri</creator><creator>Krishna, Gajula Sruthi</creator><creator>Sheela, J.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231027</creationdate><title>Superposed CNN-RBN joint network-based gesture recognition system</title><author>Meena, S. Divya ; Rao, Thoom Purna Chander ; Krishna, Kolluri Vamsi ; Chandra, Sandra Bharth ; Vyshnavi, Kolluri ; Krishna, Gajula Sruthi ; Sheela, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-9a0608d6ef58c9e1087ef86cfb8b1e2ba40ea2d04e88e53dce2276042c59075f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Feature extraction</topic><topic>Gesture recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meena, S. Divya</creatorcontrib><creatorcontrib>Rao, Thoom Purna Chander</creatorcontrib><creatorcontrib>Krishna, Kolluri Vamsi</creatorcontrib><creatorcontrib>Chandra, Sandra Bharth</creatorcontrib><creatorcontrib>Vyshnavi, Kolluri</creatorcontrib><creatorcontrib>Krishna, Gajula Sruthi</creatorcontrib><creatorcontrib>Sheela, J.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena, S. Divya</au><au>Rao, Thoom Purna Chander</au><au>Krishna, Kolluri Vamsi</au><au>Chandra, Sandra Bharth</au><au>Vyshnavi, Kolluri</au><au>Krishna, Gajula Sruthi</au><au>Sheela, J.</au><au>Reddy, B Damodhara</au><au>Ferro, Paolo</au><au>Babu, B. Sridhar</au><au>Malasri, Siripong Pong</au><au>Kumar, Kaushik</au><au>Babu, Matam Mohan</au><au>Vemanaboina, Harinadh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Superposed CNN-RBN joint network-based gesture recognition system</atitle><btitle>AIP conference proceedings</btitle><date>2023-10-27</date><risdate>2023</risdate><volume>2869</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The hand is a non-rigid item with a wide range of motions, making gesture identification more complex. The organization and recognition of a frame still images lie at the heart of dynamic gesture recognition. As a result, this paper focuses mostly on static gesture identification. There are currently various issues with gesture recognition, including as accuracy, real-time capability, and resilience. In order to access address aforementioned issues, this research proposes a gesture recognition network that combines CNN and RBM. It primarily employs a superposed network of numerous RBMs for unsupervised feature extraction, which is then merged with CNN supervised feature extraction. These characteristics are then blend to collocate them. This modelling findings suggest that the advance superposed network performs superior in detecting simple and complex backdrop gesture samples, that gesture sample detection in complex backgrounds still needs to be improved.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0168203</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2869 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2882584472
source AIP Journals Complete
subjects Feature extraction
Gesture recognition
title Superposed CNN-RBN joint network-based gesture recognition system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Superposed%20CNN-RBN%20joint%20network-based%20gesture%20recognition%20system&rft.btitle=AIP%20conference%20proceedings&rft.au=Meena,%20S.%20Divya&rft.date=2023-10-27&rft.volume=2869&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0168203&rft_dat=%3Cproquest_scita%3E2882584472%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882584472&rft_id=info:pmid/&rfr_iscdi=true