A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks

In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-11, Vol.70 (11), p.1-1
Hauptverfasser: Zuo, Haibiao, Hao, Jiacheng, Lin, Haotao, Zhao, Xiaojin, Yang, Yatao, Huang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 70
creator Zuo, Haibiao
Hao, Jiacheng
Lin, Haotao
Zhao, Xiaojin
Yang, Yatao
Huang, Lei
description In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to the added bias circuitries for column line and digital comparator for PUF bit generation, traditional 3T-APS-based CIS can be well-reused to construct the proposed strong PUF for authenticating the recorded images or videos. Taking advantage of the inherent high-resolution pixel array of CIS, the proposed strong PUF significantly extends the challenge-response-pair (CRP) space of the previous implementations. In addition, large CRP nonlinearity can be obtained by biasing the selected 3T-APS pixels at the subthreshold region, which further increases the complexity of the above extended CRP space and its resilience to various machine learning (ML) attacks. Moreover, the proposed strong PUF design is validated by the extensive measurement results of the prototype chips fabricated using a standard 65-nm CMOS process. Featuring a low energy consumption of 3.02 pJ/bit and a high area efficiency of 1.64×1033 bit/F2, prediction error of 49.1% 51.84% can be achieved under various ML attacks based on artificial neural network, logistic regression, support vector machine and covariance matrix adaptation evolution strategy, with the number of adopted CRPs for training up to 10 million.
doi_str_mv 10.1109/TCSII.2023.3282629
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2882575569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10143994</ieee_id><sourcerecordid>2882575569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-f176ef2173cd5b8cd5162e64be08299f20cf2adef5a2338ba9957656f40e4e63</originalsourceid><addsrcrecordid>eNpNkM1OAjEUhSdGExF9AeOiiXFZaG-n0-kSiAgGlQiuJ2XmDhRxBtsS4xv42A7Cws39y_nOTU4UXXPW4Zzp7nwwG487wEB0BKSQgD6JWlzKlAql-el-jjVVKlbn0YX3a8ZAMwGt6KdHRIcB2T52-zYQMae96Yz2jceCjCs6w8rXjsyCq6slmb4NyRBN2DnbbM9oHOWM3ZGRccWXcUheceebaoKtiakKMrLLVXP0dmOxypGEmjyZfGUrJJOGrvY2vRBM_u4vo7PSbDxeHXs7mg_v54MRnbw8jAe9Cc0hVoGWXCVYAlciL-QibQpPAJN4gSwFrUtgeQmmwFIaECJdGK2lSmRSxgxjTEQ7uj3Ybl39uUMfsnW9c1XzMYM0BamkTHSjgoMqd7X3Dsts6-yHcd8ZZ9k-8Owv8GwfeHYMvIFuDpBFxH8Aj4XWsfgFh0x5yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882575569</pqid></control><display><type>article</type><title>A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks</title><source>IEEE Electronic Library (IEL)</source><creator>Zuo, Haibiao ; Hao, Jiacheng ; Lin, Haotao ; Zhao, Xiaojin ; Yang, Yatao ; Huang, Lei</creator><creatorcontrib>Zuo, Haibiao ; Hao, Jiacheng ; Lin, Haotao ; Zhao, Xiaojin ; Yang, Yatao ; Huang, Lei</creatorcontrib><description>In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to the added bias circuitries for column line and digital comparator for PUF bit generation, traditional 3T-APS-based CIS can be well-reused to construct the proposed strong PUF for authenticating the recorded images or videos. Taking advantage of the inherent high-resolution pixel array of CIS, the proposed strong PUF significantly extends the challenge-response-pair (CRP) space of the previous implementations. In addition, large CRP nonlinearity can be obtained by biasing the selected 3T-APS pixels at the subthreshold region, which further increases the complexity of the above extended CRP space and its resilience to various machine learning (ML) attacks. Moreover, the proposed strong PUF design is validated by the extensive measurement results of the prototype chips fabricated using a standard 65-nm CMOS process. Featuring a low energy consumption of 3.02 pJ/bit and a high area efficiency of 1.64×1033 bit/F2, prediction error of 49.1% 51.84% can be achieved under various ML attacks based on artificial neural network, logistic regression, support vector machine and covariance matrix adaptation evolution strategy, with the number of adopted CRPs for training up to 10 million.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2023.3282629</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-transistor active pixel sensor ; Active pixel sensors ; Artificial neural networks ; Cameras ; CMOS ; CMOS image sensor ; Covariance matrix ; Energy consumption ; energy efficient ; Entropy ; Internet of Things ; Machine learning ; Mathematical analysis ; Matrix algebra ; Photodiodes ; Physical unclonable function ; Pixels ; Resilience ; Sensors ; strong physical unclonable function ; Support vector machines ; ultra-high hardware reuse ratio</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-11, Vol.70 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-f176ef2173cd5b8cd5162e64be08299f20cf2adef5a2338ba9957656f40e4e63</cites><orcidid>0000-0002-9965-3516 ; 0000-0003-4534-7625 ; 0000-0002-0103-3723 ; 0000-0002-7056-3218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10143994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10143994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zuo, Haibiao</creatorcontrib><creatorcontrib>Hao, Jiacheng</creatorcontrib><creatorcontrib>Lin, Haotao</creatorcontrib><creatorcontrib>Zhao, Xiaojin</creatorcontrib><creatorcontrib>Yang, Yatao</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><title>A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to the added bias circuitries for column line and digital comparator for PUF bit generation, traditional 3T-APS-based CIS can be well-reused to construct the proposed strong PUF for authenticating the recorded images or videos. Taking advantage of the inherent high-resolution pixel array of CIS, the proposed strong PUF significantly extends the challenge-response-pair (CRP) space of the previous implementations. In addition, large CRP nonlinearity can be obtained by biasing the selected 3T-APS pixels at the subthreshold region, which further increases the complexity of the above extended CRP space and its resilience to various machine learning (ML) attacks. Moreover, the proposed strong PUF design is validated by the extensive measurement results of the prototype chips fabricated using a standard 65-nm CMOS process. Featuring a low energy consumption of 3.02 pJ/bit and a high area efficiency of 1.64×1033 bit/F2, prediction error of 49.1% 51.84% can be achieved under various ML attacks based on artificial neural network, logistic regression, support vector machine and covariance matrix adaptation evolution strategy, with the number of adopted CRPs for training up to 10 million.</description><subject>3-transistor active pixel sensor</subject><subject>Active pixel sensors</subject><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>CMOS</subject><subject>CMOS image sensor</subject><subject>Covariance matrix</subject><subject>Energy consumption</subject><subject>energy efficient</subject><subject>Entropy</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Photodiodes</subject><subject>Physical unclonable function</subject><subject>Pixels</subject><subject>Resilience</subject><subject>Sensors</subject><subject>strong physical unclonable function</subject><subject>Support vector machines</subject><subject>ultra-high hardware reuse ratio</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OAjEUhSdGExF9AeOiiXFZaG-n0-kSiAgGlQiuJ2XmDhRxBtsS4xv42A7Cws39y_nOTU4UXXPW4Zzp7nwwG487wEB0BKSQgD6JWlzKlAql-el-jjVVKlbn0YX3a8ZAMwGt6KdHRIcB2T52-zYQMae96Yz2jceCjCs6w8rXjsyCq6slmb4NyRBN2DnbbM9oHOWM3ZGRccWXcUheceebaoKtiakKMrLLVXP0dmOxypGEmjyZfGUrJJOGrvY2vRBM_u4vo7PSbDxeHXs7mg_v54MRnbw8jAe9Cc0hVoGWXCVYAlciL-QibQpPAJN4gSwFrUtgeQmmwFIaECJdGK2lSmRSxgxjTEQ7uj3Ybl39uUMfsnW9c1XzMYM0BamkTHSjgoMqd7X3Dsts6-yHcd8ZZ9k-8Owv8GwfeHYMvIFuDpBFxH8Aj4XWsfgFh0x5yw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zuo, Haibiao</creator><creator>Hao, Jiacheng</creator><creator>Lin, Haotao</creator><creator>Zhao, Xiaojin</creator><creator>Yang, Yatao</creator><creator>Huang, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9965-3516</orcidid><orcidid>https://orcid.org/0000-0003-4534-7625</orcidid><orcidid>https://orcid.org/0000-0002-0103-3723</orcidid><orcidid>https://orcid.org/0000-0002-7056-3218</orcidid></search><sort><creationdate>20231101</creationdate><title>A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks</title><author>Zuo, Haibiao ; Hao, Jiacheng ; Lin, Haotao ; Zhao, Xiaojin ; Yang, Yatao ; Huang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-f176ef2173cd5b8cd5162e64be08299f20cf2adef5a2338ba9957656f40e4e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-transistor active pixel sensor</topic><topic>Active pixel sensors</topic><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>CMOS</topic><topic>CMOS image sensor</topic><topic>Covariance matrix</topic><topic>Energy consumption</topic><topic>energy efficient</topic><topic>Entropy</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Photodiodes</topic><topic>Physical unclonable function</topic><topic>Pixels</topic><topic>Resilience</topic><topic>Sensors</topic><topic>strong physical unclonable function</topic><topic>Support vector machines</topic><topic>ultra-high hardware reuse ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Haibiao</creatorcontrib><creatorcontrib>Hao, Jiacheng</creatorcontrib><creatorcontrib>Lin, Haotao</creatorcontrib><creatorcontrib>Zhao, Xiaojin</creatorcontrib><creatorcontrib>Yang, Yatao</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zuo, Haibiao</au><au>Hao, Jiacheng</au><au>Lin, Haotao</au><au>Zhao, Xiaojin</au><au>Yang, Yatao</au><au>Huang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>70</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to the added bias circuitries for column line and digital comparator for PUF bit generation, traditional 3T-APS-based CIS can be well-reused to construct the proposed strong PUF for authenticating the recorded images or videos. Taking advantage of the inherent high-resolution pixel array of CIS, the proposed strong PUF significantly extends the challenge-response-pair (CRP) space of the previous implementations. In addition, large CRP nonlinearity can be obtained by biasing the selected 3T-APS pixels at the subthreshold region, which further increases the complexity of the above extended CRP space and its resilience to various machine learning (ML) attacks. Moreover, the proposed strong PUF design is validated by the extensive measurement results of the prototype chips fabricated using a standard 65-nm CMOS process. Featuring a low energy consumption of 3.02 pJ/bit and a high area efficiency of 1.64×1033 bit/F2, prediction error of 49.1% 51.84% can be achieved under various ML attacks based on artificial neural network, logistic regression, support vector machine and covariance matrix adaptation evolution strategy, with the number of adopted CRPs for training up to 10 million.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2023.3282629</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9965-3516</orcidid><orcidid>https://orcid.org/0000-0003-4534-7625</orcidid><orcidid>https://orcid.org/0000-0002-0103-3723</orcidid><orcidid>https://orcid.org/0000-0002-7056-3218</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2023-11, Vol.70 (11), p.1-1
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2882575569
source IEEE Electronic Library (IEL)
subjects 3-transistor active pixel sensor
Active pixel sensors
Artificial neural networks
Cameras
CMOS
CMOS image sensor
Covariance matrix
Energy consumption
energy efficient
Entropy
Internet of Things
Machine learning
Mathematical analysis
Matrix algebra
Photodiodes
Physical unclonable function
Pixels
Resilience
Sensors
strong physical unclonable function
Support vector machines
ultra-high hardware reuse ratio
title A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203.02%20pJ/Bit%203T-APS-Based%20In-Sensor%20Strong%20PUF%20Featuring%20Near-100%25%20Hardware%20Reuse%20Ratio%20and%20High%20Resilience%20to%20Machine%20Learning%20Attacks&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Zuo,%20Haibiao&rft.date=2023-11-01&rft.volume=70&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2023.3282629&rft_dat=%3Cproquest_RIE%3E2882575569%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882575569&rft_id=info:pmid/&rft_ieee_id=10143994&rfr_iscdi=true