A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks
In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-11, Vol.70 (11), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 70 |
creator | Zuo, Haibiao Hao, Jiacheng Lin, Haotao Zhao, Xiaojin Yang, Yatao Huang, Lei |
description | In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to the added bias circuitries for column line and digital comparator for PUF bit generation, traditional 3T-APS-based CIS can be well-reused to construct the proposed strong PUF for authenticating the recorded images or videos. Taking advantage of the inherent high-resolution pixel array of CIS, the proposed strong PUF significantly extends the challenge-response-pair (CRP) space of the previous implementations. In addition, large CRP nonlinearity can be obtained by biasing the selected 3T-APS pixels at the subthreshold region, which further increases the complexity of the above extended CRP space and its resilience to various machine learning (ML) attacks. Moreover, the proposed strong PUF design is validated by the extensive measurement results of the prototype chips fabricated using a standard 65-nm CMOS process. Featuring a low energy consumption of 3.02 pJ/bit and a high area efficiency of 1.64×1033 bit/F2, prediction error of 49.1% 51.84% can be achieved under various ML attacks based on artificial neural network, logistic regression, support vector machine and covariance matrix adaptation evolution strategy, with the number of adopted CRPs for training up to 10 million. |
doi_str_mv | 10.1109/TCSII.2023.3282629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2882575569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10143994</ieee_id><sourcerecordid>2882575569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-f176ef2173cd5b8cd5162e64be08299f20cf2adef5a2338ba9957656f40e4e63</originalsourceid><addsrcrecordid>eNpNkM1OAjEUhSdGExF9AeOiiXFZaG-n0-kSiAgGlQiuJ2XmDhRxBtsS4xv42A7Cws39y_nOTU4UXXPW4Zzp7nwwG487wEB0BKSQgD6JWlzKlAql-el-jjVVKlbn0YX3a8ZAMwGt6KdHRIcB2T52-zYQMae96Yz2jceCjCs6w8rXjsyCq6slmb4NyRBN2DnbbM9oHOWM3ZGRccWXcUheceebaoKtiakKMrLLVXP0dmOxypGEmjyZfGUrJJOGrvY2vRBM_u4vo7PSbDxeHXs7mg_v54MRnbw8jAe9Cc0hVoGWXCVYAlciL-QibQpPAJN4gSwFrUtgeQmmwFIaECJdGK2lSmRSxgxjTEQ7uj3Ybl39uUMfsnW9c1XzMYM0BamkTHSjgoMqd7X3Dsts6-yHcd8ZZ9k-8Owv8GwfeHYMvIFuDpBFxH8Aj4XWsfgFh0x5yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882575569</pqid></control><display><type>article</type><title>A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks</title><source>IEEE Electronic Library (IEL)</source><creator>Zuo, Haibiao ; Hao, Jiacheng ; Lin, Haotao ; Zhao, Xiaojin ; Yang, Yatao ; Huang, Lei</creator><creatorcontrib>Zuo, Haibiao ; Hao, Jiacheng ; Lin, Haotao ; Zhao, Xiaojin ; Yang, Yatao ; Huang, Lei</creatorcontrib><description>In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to the added bias circuitries for column line and digital comparator for PUF bit generation, traditional 3T-APS-based CIS can be well-reused to construct the proposed strong PUF for authenticating the recorded images or videos. Taking advantage of the inherent high-resolution pixel array of CIS, the proposed strong PUF significantly extends the challenge-response-pair (CRP) space of the previous implementations. In addition, large CRP nonlinearity can be obtained by biasing the selected 3T-APS pixels at the subthreshold region, which further increases the complexity of the above extended CRP space and its resilience to various machine learning (ML) attacks. Moreover, the proposed strong PUF design is validated by the extensive measurement results of the prototype chips fabricated using a standard 65-nm CMOS process. Featuring a low energy consumption of 3.02 pJ/bit and a high area efficiency of 1.64×1033 bit/F2, prediction error of 49.1% 51.84% can be achieved under various ML attacks based on artificial neural network, logistic regression, support vector machine and covariance matrix adaptation evolution strategy, with the number of adopted CRPs for training up to 10 million.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2023.3282629</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-transistor active pixel sensor ; Active pixel sensors ; Artificial neural networks ; Cameras ; CMOS ; CMOS image sensor ; Covariance matrix ; Energy consumption ; energy efficient ; Entropy ; Internet of Things ; Machine learning ; Mathematical analysis ; Matrix algebra ; Photodiodes ; Physical unclonable function ; Pixels ; Resilience ; Sensors ; strong physical unclonable function ; Support vector machines ; ultra-high hardware reuse ratio</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-11, Vol.70 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-f176ef2173cd5b8cd5162e64be08299f20cf2adef5a2338ba9957656f40e4e63</cites><orcidid>0000-0002-9965-3516 ; 0000-0003-4534-7625 ; 0000-0002-0103-3723 ; 0000-0002-7056-3218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10143994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10143994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zuo, Haibiao</creatorcontrib><creatorcontrib>Hao, Jiacheng</creatorcontrib><creatorcontrib>Lin, Haotao</creatorcontrib><creatorcontrib>Zhao, Xiaojin</creatorcontrib><creatorcontrib>Yang, Yatao</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><title>A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to the added bias circuitries for column line and digital comparator for PUF bit generation, traditional 3T-APS-based CIS can be well-reused to construct the proposed strong PUF for authenticating the recorded images or videos. Taking advantage of the inherent high-resolution pixel array of CIS, the proposed strong PUF significantly extends the challenge-response-pair (CRP) space of the previous implementations. In addition, large CRP nonlinearity can be obtained by biasing the selected 3T-APS pixels at the subthreshold region, which further increases the complexity of the above extended CRP space and its resilience to various machine learning (ML) attacks. Moreover, the proposed strong PUF design is validated by the extensive measurement results of the prototype chips fabricated using a standard 65-nm CMOS process. Featuring a low energy consumption of 3.02 pJ/bit and a high area efficiency of 1.64×1033 bit/F2, prediction error of 49.1% 51.84% can be achieved under various ML attacks based on artificial neural network, logistic regression, support vector machine and covariance matrix adaptation evolution strategy, with the number of adopted CRPs for training up to 10 million.</description><subject>3-transistor active pixel sensor</subject><subject>Active pixel sensors</subject><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>CMOS</subject><subject>CMOS image sensor</subject><subject>Covariance matrix</subject><subject>Energy consumption</subject><subject>energy efficient</subject><subject>Entropy</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Photodiodes</subject><subject>Physical unclonable function</subject><subject>Pixels</subject><subject>Resilience</subject><subject>Sensors</subject><subject>strong physical unclonable function</subject><subject>Support vector machines</subject><subject>ultra-high hardware reuse ratio</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OAjEUhSdGExF9AeOiiXFZaG-n0-kSiAgGlQiuJ2XmDhRxBtsS4xv42A7Cws39y_nOTU4UXXPW4Zzp7nwwG487wEB0BKSQgD6JWlzKlAql-el-jjVVKlbn0YX3a8ZAMwGt6KdHRIcB2T52-zYQMae96Yz2jceCjCs6w8rXjsyCq6slmb4NyRBN2DnbbM9oHOWM3ZGRccWXcUheceebaoKtiakKMrLLVXP0dmOxypGEmjyZfGUrJJOGrvY2vRBM_u4vo7PSbDxeHXs7mg_v54MRnbw8jAe9Cc0hVoGWXCVYAlciL-QibQpPAJN4gSwFrUtgeQmmwFIaECJdGK2lSmRSxgxjTEQ7uj3Ybl39uUMfsnW9c1XzMYM0BamkTHSjgoMqd7X3Dsts6-yHcd8ZZ9k-8Owv8GwfeHYMvIFuDpBFxH8Aj4XWsfgFh0x5yw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zuo, Haibiao</creator><creator>Hao, Jiacheng</creator><creator>Lin, Haotao</creator><creator>Zhao, Xiaojin</creator><creator>Yang, Yatao</creator><creator>Huang, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9965-3516</orcidid><orcidid>https://orcid.org/0000-0003-4534-7625</orcidid><orcidid>https://orcid.org/0000-0002-0103-3723</orcidid><orcidid>https://orcid.org/0000-0002-7056-3218</orcidid></search><sort><creationdate>20231101</creationdate><title>A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks</title><author>Zuo, Haibiao ; Hao, Jiacheng ; Lin, Haotao ; Zhao, Xiaojin ; Yang, Yatao ; Huang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-f176ef2173cd5b8cd5162e64be08299f20cf2adef5a2338ba9957656f40e4e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-transistor active pixel sensor</topic><topic>Active pixel sensors</topic><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>CMOS</topic><topic>CMOS image sensor</topic><topic>Covariance matrix</topic><topic>Energy consumption</topic><topic>energy efficient</topic><topic>Entropy</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Photodiodes</topic><topic>Physical unclonable function</topic><topic>Pixels</topic><topic>Resilience</topic><topic>Sensors</topic><topic>strong physical unclonable function</topic><topic>Support vector machines</topic><topic>ultra-high hardware reuse ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Haibiao</creatorcontrib><creatorcontrib>Hao, Jiacheng</creatorcontrib><creatorcontrib>Lin, Haotao</creatorcontrib><creatorcontrib>Zhao, Xiaojin</creatorcontrib><creatorcontrib>Yang, Yatao</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zuo, Haibiao</au><au>Hao, Jiacheng</au><au>Lin, Haotao</au><au>Zhao, Xiaojin</au><au>Yang, Yatao</au><au>Huang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>70</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>In this brief, we present an energy-efficient in-sensor strong physical unclonable function (PUF) based on the static entropy of 3-transistor active pixel sensor (3T-APS) structure that is widely-adopted in the CMOS image sensors (CIS). With ultra-small silicon area overhead of 0.25% dedicated to the added bias circuitries for column line and digital comparator for PUF bit generation, traditional 3T-APS-based CIS can be well-reused to construct the proposed strong PUF for authenticating the recorded images or videos. Taking advantage of the inherent high-resolution pixel array of CIS, the proposed strong PUF significantly extends the challenge-response-pair (CRP) space of the previous implementations. In addition, large CRP nonlinearity can be obtained by biasing the selected 3T-APS pixels at the subthreshold region, which further increases the complexity of the above extended CRP space and its resilience to various machine learning (ML) attacks. Moreover, the proposed strong PUF design is validated by the extensive measurement results of the prototype chips fabricated using a standard 65-nm CMOS process. Featuring a low energy consumption of 3.02 pJ/bit and a high area efficiency of 1.64×1033 bit/F2, prediction error of 49.1% 51.84% can be achieved under various ML attacks based on artificial neural network, logistic regression, support vector machine and covariance matrix adaptation evolution strategy, with the number of adopted CRPs for training up to 10 million.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2023.3282629</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9965-3516</orcidid><orcidid>https://orcid.org/0000-0003-4534-7625</orcidid><orcidid>https://orcid.org/0000-0002-0103-3723</orcidid><orcidid>https://orcid.org/0000-0002-7056-3218</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2023-11, Vol.70 (11), p.1-1 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2882575569 |
source | IEEE Electronic Library (IEL) |
subjects | 3-transistor active pixel sensor Active pixel sensors Artificial neural networks Cameras CMOS CMOS image sensor Covariance matrix Energy consumption energy efficient Entropy Internet of Things Machine learning Mathematical analysis Matrix algebra Photodiodes Physical unclonable function Pixels Resilience Sensors strong physical unclonable function Support vector machines ultra-high hardware reuse ratio |
title | A 3.02 pJ/Bit 3T-APS-Based In-Sensor Strong PUF Featuring Near-100% Hardware Reuse Ratio and High Resilience to Machine Learning Attacks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203.02%20pJ/Bit%203T-APS-Based%20In-Sensor%20Strong%20PUF%20Featuring%20Near-100%25%20Hardware%20Reuse%20Ratio%20and%20High%20Resilience%20to%20Machine%20Learning%20Attacks&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Zuo,%20Haibiao&rft.date=2023-11-01&rft.volume=70&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2023.3282629&rft_dat=%3Cproquest_RIE%3E2882575569%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882575569&rft_id=info:pmid/&rft_ieee_id=10143994&rfr_iscdi=true |