Distributed Neighbor Selection in Multiagent Networks
Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-11, Vol.68 (11), p.6711-6726 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6726 |
---|---|
container_issue | 11 |
container_start_page | 6711 |
container_title | IEEE transactions on automatic control |
container_volume | 68 |
creator | Shao, Haibin Pan, Lulu Mesbahi, Mehran Xi, Yugeng Li, Dewei |
description | Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be maintained—and even enhanced—when agents interact only with a subset of their respective (available) neighbors. As shown in this article, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the “relative rate of change” in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify “favorable” neighbors to interact with. Multiagent networks with and without external influence are examined, as well as extensions to signed networks. This article underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multiagent systems. |
doi_str_mv | 10.1109/TAC.2023.3246425 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2882572880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882572880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2225-68bfd56cd8c84b6ec129c649d9f61e797e97efe376a722798bfe3aa0a3aba2573</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKt3jwuetyaTTTY5lvoJVQ_Wc8hmZ2tq3a1JFvHfm9LCMMPAw_vCQ8g1ozPGqL5dzRczoMBnHCpZgTghEyaEKkEAPyUTSpkqNSh5Ti5i3ORXVhWbEHHnYwq-GRO2xSv69WczhOIdt-iSH_rC98XLuE3errFPGUi_Q_iKl-Sss9uIV8c7JR8P96vFU7l8e3xezJelAwBRStV0rZCuVU5VjUTHQDtZ6VZ3kmGta8zTIa-lrQFqnXHk1lLLbWNB1HxKbg65uzD8jBiT2Qxj6HOlAaUykTfNFD1QLgwxBuzMLvhvG_4Mo2Yvx2Q5Zi_HHOXwf24GVrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882572880</pqid></control><display><type>article</type><title>Distributed Neighbor Selection in Multiagent Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Haibin ; Pan, Lulu ; Mesbahi, Mehran ; Xi, Yugeng ; Li, Dewei</creator><creatorcontrib>Shao, Haibin ; Pan, Lulu ; Mesbahi, Mehran ; Xi, Yugeng ; Li, Dewei</creatorcontrib><description>Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be maintained—and even enhanced—when agents interact only with a subset of their respective (available) neighbors. As shown in this article, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the “relative rate of change” in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify “favorable” neighbors to interact with. Multiagent networks with and without external influence are examined, as well as extensions to signed networks. This article underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multiagent systems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3246425</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Eigenvectors ; Multiagent systems ; Networks</subject><ispartof>IEEE transactions on automatic control, 2023-11, Vol.68 (11), p.6711-6726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2225-68bfd56cd8c84b6ec129c649d9f61e797e97efe376a722798bfe3aa0a3aba2573</citedby><cites>FETCH-LOGICAL-c2225-68bfd56cd8c84b6ec129c649d9f61e797e97efe376a722798bfe3aa0a3aba2573</cites><orcidid>0000-0003-3343-625X ; 0000-0001-8869-5676 ; 0000-0001-7724-9240 ; 0000-0002-0604-7518 ; 0000-0001-6972-6588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shao, Haibin</creatorcontrib><creatorcontrib>Pan, Lulu</creatorcontrib><creatorcontrib>Mesbahi, Mehran</creatorcontrib><creatorcontrib>Xi, Yugeng</creatorcontrib><creatorcontrib>Li, Dewei</creatorcontrib><title>Distributed Neighbor Selection in Multiagent Networks</title><title>IEEE transactions on automatic control</title><description>Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be maintained—and even enhanced—when agents interact only with a subset of their respective (available) neighbors. As shown in this article, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the “relative rate of change” in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify “favorable” neighbors to interact with. Multiagent networks with and without external influence are examined, as well as extensions to signed networks. This article underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multiagent systems.</description><subject>Algorithms</subject><subject>Eigenvectors</subject><subject>Multiagent systems</subject><subject>Networks</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKt3jwuetyaTTTY5lvoJVQ_Wc8hmZ2tq3a1JFvHfm9LCMMPAw_vCQ8g1ozPGqL5dzRczoMBnHCpZgTghEyaEKkEAPyUTSpkqNSh5Ti5i3ORXVhWbEHHnYwq-GRO2xSv69WczhOIdt-iSH_rC98XLuE3errFPGUi_Q_iKl-Sss9uIV8c7JR8P96vFU7l8e3xezJelAwBRStV0rZCuVU5VjUTHQDtZ6VZ3kmGta8zTIa-lrQFqnXHk1lLLbWNB1HxKbg65uzD8jBiT2Qxj6HOlAaUykTfNFD1QLgwxBuzMLvhvG_4Mo2Yvx2Q5Zi_HHOXwf24GVrk</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Shao, Haibin</creator><creator>Pan, Lulu</creator><creator>Mesbahi, Mehran</creator><creator>Xi, Yugeng</creator><creator>Li, Dewei</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3343-625X</orcidid><orcidid>https://orcid.org/0000-0001-8869-5676</orcidid><orcidid>https://orcid.org/0000-0001-7724-9240</orcidid><orcidid>https://orcid.org/0000-0002-0604-7518</orcidid><orcidid>https://orcid.org/0000-0001-6972-6588</orcidid></search><sort><creationdate>20231101</creationdate><title>Distributed Neighbor Selection in Multiagent Networks</title><author>Shao, Haibin ; Pan, Lulu ; Mesbahi, Mehran ; Xi, Yugeng ; Li, Dewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2225-68bfd56cd8c84b6ec129c649d9f61e797e97efe376a722798bfe3aa0a3aba2573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Eigenvectors</topic><topic>Multiagent systems</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Haibin</creatorcontrib><creatorcontrib>Pan, Lulu</creatorcontrib><creatorcontrib>Mesbahi, Mehran</creatorcontrib><creatorcontrib>Xi, Yugeng</creatorcontrib><creatorcontrib>Li, Dewei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Haibin</au><au>Pan, Lulu</au><au>Mesbahi, Mehran</au><au>Xi, Yugeng</au><au>Li, Dewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Neighbor Selection in Multiagent Networks</atitle><jtitle>IEEE transactions on automatic control</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>68</volume><issue>11</issue><spage>6711</spage><epage>6726</epage><pages>6711-6726</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><abstract>Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be maintained—and even enhanced—when agents interact only with a subset of their respective (available) neighbors. As shown in this article, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the “relative rate of change” in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify “favorable” neighbors to interact with. Multiagent networks with and without external influence are examined, as well as extensions to signed networks. This article underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multiagent systems.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TAC.2023.3246425</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3343-625X</orcidid><orcidid>https://orcid.org/0000-0001-8869-5676</orcidid><orcidid>https://orcid.org/0000-0001-7724-9240</orcidid><orcidid>https://orcid.org/0000-0002-0604-7518</orcidid><orcidid>https://orcid.org/0000-0001-6972-6588</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2023-11, Vol.68 (11), p.6711-6726 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_2882572880 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Eigenvectors Multiagent systems Networks |
title | Distributed Neighbor Selection in Multiagent Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Neighbor%20Selection%20in%20Multiagent%20Networks&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Shao,%20Haibin&rft.date=2023-11-01&rft.volume=68&rft.issue=11&rft.spage=6711&rft.epage=6726&rft.pages=6711-6726&rft.issn=0018-9286&rft.eissn=1558-2523&rft_id=info:doi/10.1109/TAC.2023.3246425&rft_dat=%3Cproquest_cross%3E2882572880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882572880&rft_id=info:pmid/&rfr_iscdi=true |