Distributed Neighbor Selection in Multiagent Networks

Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2023-11, Vol.68 (11), p.6711-6726
Hauptverfasser: Shao, Haibin, Pan, Lulu, Mesbahi, Mehran, Xi, Yugeng, Li, Dewei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6726
container_issue 11
container_start_page 6711
container_title IEEE transactions on automatic control
container_volume 68
creator Shao, Haibin
Pan, Lulu
Mesbahi, Mehran
Xi, Yugeng
Li, Dewei
description Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be maintained—and even enhanced—when agents interact only with a subset of their respective (available) neighbors. As shown in this article, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the “relative rate of change” in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify “favorable” neighbors to interact with. Multiagent networks with and without external influence are examined, as well as extensions to signed networks. This article underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multiagent systems.
doi_str_mv 10.1109/TAC.2023.3246425
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2882572880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882572880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2225-68bfd56cd8c84b6ec129c649d9f61e797e97efe376a722798bfe3aa0a3aba2573</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKt3jwuetyaTTTY5lvoJVQ_Wc8hmZ2tq3a1JFvHfm9LCMMPAw_vCQ8g1ozPGqL5dzRczoMBnHCpZgTghEyaEKkEAPyUTSpkqNSh5Ti5i3ORXVhWbEHHnYwq-GRO2xSv69WczhOIdt-iSH_rC98XLuE3errFPGUi_Q_iKl-Sss9uIV8c7JR8P96vFU7l8e3xezJelAwBRStV0rZCuVU5VjUTHQDtZ6VZ3kmGta8zTIa-lrQFqnXHk1lLLbWNB1HxKbg65uzD8jBiT2Qxj6HOlAaUykTfNFD1QLgwxBuzMLvhvG_4Mo2Yvx2Q5Zi_HHOXwf24GVrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882572880</pqid></control><display><type>article</type><title>Distributed Neighbor Selection in Multiagent Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Haibin ; Pan, Lulu ; Mesbahi, Mehran ; Xi, Yugeng ; Li, Dewei</creator><creatorcontrib>Shao, Haibin ; Pan, Lulu ; Mesbahi, Mehran ; Xi, Yugeng ; Li, Dewei</creatorcontrib><description>Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be maintained—and even enhanced—when agents interact only with a subset of their respective (available) neighbors. As shown in this article, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the “relative rate of change” in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify “favorable” neighbors to interact with. Multiagent networks with and without external influence are examined, as well as extensions to signed networks. This article underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multiagent systems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3246425</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Eigenvectors ; Multiagent systems ; Networks</subject><ispartof>IEEE transactions on automatic control, 2023-11, Vol.68 (11), p.6711-6726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2225-68bfd56cd8c84b6ec129c649d9f61e797e97efe376a722798bfe3aa0a3aba2573</citedby><cites>FETCH-LOGICAL-c2225-68bfd56cd8c84b6ec129c649d9f61e797e97efe376a722798bfe3aa0a3aba2573</cites><orcidid>0000-0003-3343-625X ; 0000-0001-8869-5676 ; 0000-0001-7724-9240 ; 0000-0002-0604-7518 ; 0000-0001-6972-6588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shao, Haibin</creatorcontrib><creatorcontrib>Pan, Lulu</creatorcontrib><creatorcontrib>Mesbahi, Mehran</creatorcontrib><creatorcontrib>Xi, Yugeng</creatorcontrib><creatorcontrib>Li, Dewei</creatorcontrib><title>Distributed Neighbor Selection in Multiagent Networks</title><title>IEEE transactions on automatic control</title><description>Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be maintained—and even enhanced—when agents interact only with a subset of their respective (available) neighbors. As shown in this article, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the “relative rate of change” in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify “favorable” neighbors to interact with. Multiagent networks with and without external influence are examined, as well as extensions to signed networks. This article underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multiagent systems.</description><subject>Algorithms</subject><subject>Eigenvectors</subject><subject>Multiagent systems</subject><subject>Networks</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKt3jwuetyaTTTY5lvoJVQ_Wc8hmZ2tq3a1JFvHfm9LCMMPAw_vCQ8g1ozPGqL5dzRczoMBnHCpZgTghEyaEKkEAPyUTSpkqNSh5Ti5i3ORXVhWbEHHnYwq-GRO2xSv69WczhOIdt-iSH_rC98XLuE3errFPGUi_Q_iKl-Sss9uIV8c7JR8P96vFU7l8e3xezJelAwBRStV0rZCuVU5VjUTHQDtZ6VZ3kmGta8zTIa-lrQFqnXHk1lLLbWNB1HxKbg65uzD8jBiT2Qxj6HOlAaUykTfNFD1QLgwxBuzMLvhvG_4Mo2Yvx2Q5Zi_HHOXwf24GVrk</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Shao, Haibin</creator><creator>Pan, Lulu</creator><creator>Mesbahi, Mehran</creator><creator>Xi, Yugeng</creator><creator>Li, Dewei</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3343-625X</orcidid><orcidid>https://orcid.org/0000-0001-8869-5676</orcidid><orcidid>https://orcid.org/0000-0001-7724-9240</orcidid><orcidid>https://orcid.org/0000-0002-0604-7518</orcidid><orcidid>https://orcid.org/0000-0001-6972-6588</orcidid></search><sort><creationdate>20231101</creationdate><title>Distributed Neighbor Selection in Multiagent Networks</title><author>Shao, Haibin ; Pan, Lulu ; Mesbahi, Mehran ; Xi, Yugeng ; Li, Dewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2225-68bfd56cd8c84b6ec129c649d9f61e797e97efe376a722798bfe3aa0a3aba2573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Eigenvectors</topic><topic>Multiagent systems</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Haibin</creatorcontrib><creatorcontrib>Pan, Lulu</creatorcontrib><creatorcontrib>Mesbahi, Mehran</creatorcontrib><creatorcontrib>Xi, Yugeng</creatorcontrib><creatorcontrib>Li, Dewei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Haibin</au><au>Pan, Lulu</au><au>Mesbahi, Mehran</au><au>Xi, Yugeng</au><au>Li, Dewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Neighbor Selection in Multiagent Networks</atitle><jtitle>IEEE transactions on automatic control</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>68</volume><issue>11</issue><spage>6711</spage><epage>6726</epage><pages>6711-6726</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><abstract>Achieving consensus via nearest neighbor rules is an important prerequisite for multiagent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This article examines whether network functionality and performance can be maintained—and even enhanced—when agents interact only with a subset of their respective (available) neighbors. As shown in this article, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the “relative rate of change” in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify “favorable” neighbors to interact with. Multiagent networks with and without external influence are examined, as well as extensions to signed networks. This article underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multiagent systems.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TAC.2023.3246425</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3343-625X</orcidid><orcidid>https://orcid.org/0000-0001-8869-5676</orcidid><orcidid>https://orcid.org/0000-0001-7724-9240</orcidid><orcidid>https://orcid.org/0000-0002-0604-7518</orcidid><orcidid>https://orcid.org/0000-0001-6972-6588</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2023-11, Vol.68 (11), p.6711-6726
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_2882572880
source IEEE Electronic Library (IEL)
subjects Algorithms
Eigenvectors
Multiagent systems
Networks
title Distributed Neighbor Selection in Multiagent Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Neighbor%20Selection%20in%20Multiagent%20Networks&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Shao,%20Haibin&rft.date=2023-11-01&rft.volume=68&rft.issue=11&rft.spage=6711&rft.epage=6726&rft.pages=6711-6726&rft.issn=0018-9286&rft.eissn=1558-2523&rft_id=info:doi/10.1109/TAC.2023.3246425&rft_dat=%3Cproquest_cross%3E2882572880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882572880&rft_id=info:pmid/&rfr_iscdi=true