Research on Obstacle Detection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar
Due to the complexity of the ocean environment, an autonomous underwater vehicle (AUV) is disturbed by obstacles when performing tasks. Therefore, the research on underwater obstacle detection and avoidance is particularly important. Based on the images collected by a forward-looking sonar on an AUV...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-11, Vol.34 (11), p.9198-9208 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9208 |
---|---|
container_issue | 11 |
container_start_page | 9198 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Cao, Xiang Ren, Lu Sun, Changyin |
description | Due to the complexity of the ocean environment, an autonomous underwater vehicle (AUV) is disturbed by obstacles when performing tasks. Therefore, the research on underwater obstacle detection and avoidance is particularly important. Based on the images collected by a forward-looking sonar on an AUV, this article proposes an obstacle detection and avoidance algorithm. First, a deep learning-based obstacle candidate area detection algorithm is developed. This algorithm uses the You Only Look Once (YOLO) v3 network to determine obstacle candidate areas in a sonar image. Then, in the determined obstacle candidate areas, the obstacle detection algorithm based on the improved threshold segmentation algorithm is used to detect obstacles accurately. Finally, using the obstacle detection results obtained from the sonar images, an obstacle avoidance algorithm based on deep reinforcement learning (DRL) is developed to plan a reasonable obstacle avoidance path of an AUV. Experimental results show that the proposed algorithms improve obstacle detection accuracy and processing speed of sonar images. At the same time, the proposed algorithms ensure AUV navigation safety in a complex obstacle environment. |
doi_str_mv | 10.1109/TNNLS.2022.3156907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2882571425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9736998</ieee_id><sourcerecordid>2882571425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-58d0bf31336102e1dc5c624ee012354e25c2be1969d819f4eca1539d4dfefebc3</originalsourceid><addsrcrecordid>eNpdkU9vEzEQxS0EolXpFwAJWeLCZYM9_pP1MRRakKJWoi3iZnntWbplYxd7F9Rvj0NCDszFo5nfexr5EfKSswXnzLy7ubxcXy-AASwEV9qw5RNyDFxDA6Jtnx765bcjclrKPaulmdLSPCdHQoGRQsMxGb9gQZf9HU2RXnVlcn5E-gEn9NNQRy4GuvqVhuCiR5p6upqnFNMmzYXexoD5t5sw0694N2yF713BsLU6T3WTQ7NO6ccQv9PrFF1-QZ71bix4un9PyO35x5uzT8366uLz2WrdeKH41Kg2sK4XXAjNGSAPXnkNEpFxEEoiKA8dcqNNaLnpJXrHlTBBhh577Lw4IW93vg85_ZyxTHYzFI_j6CLWwy1oyQRIDaKib_5D79OcY73OQtuCWnIJqlKwo3xOpWTs7UMeNi4_Ws7sNg77Nw67jcPu46ii13vrudtgOEj-fX4FXu2AAREPa7MU2phW_AFajI54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882571425</pqid></control><display><type>article</type><title>Research on Obstacle Detection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Xiang ; Ren, Lu ; Sun, Changyin</creator><creatorcontrib>Cao, Xiang ; Ren, Lu ; Sun, Changyin</creatorcontrib><description>Due to the complexity of the ocean environment, an autonomous underwater vehicle (AUV) is disturbed by obstacles when performing tasks. Therefore, the research on underwater obstacle detection and avoidance is particularly important. Based on the images collected by a forward-looking sonar on an AUV, this article proposes an obstacle detection and avoidance algorithm. First, a deep learning-based obstacle candidate area detection algorithm is developed. This algorithm uses the You Only Look Once (YOLO) v3 network to determine obstacle candidate areas in a sonar image. Then, in the determined obstacle candidate areas, the obstacle detection algorithm based on the improved threshold segmentation algorithm is used to detect obstacles accurately. Finally, using the obstacle detection results obtained from the sonar images, an obstacle avoidance algorithm based on deep reinforcement learning (DRL) is developed to plan a reasonable obstacle avoidance path of an AUV. Experimental results show that the proposed algorithms improve obstacle detection accuracy and processing speed of sonar images. At the same time, the proposed algorithms ensure AUV navigation safety in a complex obstacle environment.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3156907</identifier><identifier>PMID: 35294362</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Autonomous underwater vehicle (AUV) ; Autonomous underwater vehicles ; Collision avoidance ; Complexity ; Deep learning ; Detection algorithms ; Feature extraction ; forward-looking sonar ; Image segmentation ; Machine learning ; Marine environment ; Navigation safety ; Obstacle avoidance ; obstacle detection and avoidance ; path planning ; Sonar ; Sonar detection ; Sonar navigation ; Underwater vehicles</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-11, Vol.34 (11), p.9198-9208</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-58d0bf31336102e1dc5c624ee012354e25c2be1969d819f4eca1539d4dfefebc3</citedby><cites>FETCH-LOGICAL-c351t-58d0bf31336102e1dc5c624ee012354e25c2be1969d819f4eca1539d4dfefebc3</cites><orcidid>0000-0002-4530-8397 ; 0000-0001-9269-334X ; 0000-0003-2448-6693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9736998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9736998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35294362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Xiang</creatorcontrib><creatorcontrib>Ren, Lu</creatorcontrib><creatorcontrib>Sun, Changyin</creatorcontrib><title>Research on Obstacle Detection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Due to the complexity of the ocean environment, an autonomous underwater vehicle (AUV) is disturbed by obstacles when performing tasks. Therefore, the research on underwater obstacle detection and avoidance is particularly important. Based on the images collected by a forward-looking sonar on an AUV, this article proposes an obstacle detection and avoidance algorithm. First, a deep learning-based obstacle candidate area detection algorithm is developed. This algorithm uses the You Only Look Once (YOLO) v3 network to determine obstacle candidate areas in a sonar image. Then, in the determined obstacle candidate areas, the obstacle detection algorithm based on the improved threshold segmentation algorithm is used to detect obstacles accurately. Finally, using the obstacle detection results obtained from the sonar images, an obstacle avoidance algorithm based on deep reinforcement learning (DRL) is developed to plan a reasonable obstacle avoidance path of an AUV. Experimental results show that the proposed algorithms improve obstacle detection accuracy and processing speed of sonar images. At the same time, the proposed algorithms ensure AUV navigation safety in a complex obstacle environment.</description><subject>Algorithms</subject><subject>Autonomous underwater vehicle (AUV)</subject><subject>Autonomous underwater vehicles</subject><subject>Collision avoidance</subject><subject>Complexity</subject><subject>Deep learning</subject><subject>Detection algorithms</subject><subject>Feature extraction</subject><subject>forward-looking sonar</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Marine environment</subject><subject>Navigation safety</subject><subject>Obstacle avoidance</subject><subject>obstacle detection and avoidance</subject><subject>path planning</subject><subject>Sonar</subject><subject>Sonar detection</subject><subject>Sonar navigation</subject><subject>Underwater vehicles</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9vEzEQxS0EolXpFwAJWeLCZYM9_pP1MRRakKJWoi3iZnntWbplYxd7F9Rvj0NCDszFo5nfexr5EfKSswXnzLy7ubxcXy-AASwEV9qw5RNyDFxDA6Jtnx765bcjclrKPaulmdLSPCdHQoGRQsMxGb9gQZf9HU2RXnVlcn5E-gEn9NNQRy4GuvqVhuCiR5p6upqnFNMmzYXexoD5t5sw0694N2yF713BsLU6T3WTQ7NO6ccQv9PrFF1-QZ71bix4un9PyO35x5uzT8366uLz2WrdeKH41Kg2sK4XXAjNGSAPXnkNEpFxEEoiKA8dcqNNaLnpJXrHlTBBhh577Lw4IW93vg85_ZyxTHYzFI_j6CLWwy1oyQRIDaKib_5D79OcY73OQtuCWnIJqlKwo3xOpWTs7UMeNi4_Ws7sNg77Nw67jcPu46ii13vrudtgOEj-fX4FXu2AAREPa7MU2phW_AFajI54</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Cao, Xiang</creator><creator>Ren, Lu</creator><creator>Sun, Changyin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4530-8397</orcidid><orcidid>https://orcid.org/0000-0001-9269-334X</orcidid><orcidid>https://orcid.org/0000-0003-2448-6693</orcidid></search><sort><creationdate>20231101</creationdate><title>Research on Obstacle Detection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar</title><author>Cao, Xiang ; Ren, Lu ; Sun, Changyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-58d0bf31336102e1dc5c624ee012354e25c2be1969d819f4eca1539d4dfefebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autonomous underwater vehicle (AUV)</topic><topic>Autonomous underwater vehicles</topic><topic>Collision avoidance</topic><topic>Complexity</topic><topic>Deep learning</topic><topic>Detection algorithms</topic><topic>Feature extraction</topic><topic>forward-looking sonar</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Marine environment</topic><topic>Navigation safety</topic><topic>Obstacle avoidance</topic><topic>obstacle detection and avoidance</topic><topic>path planning</topic><topic>Sonar</topic><topic>Sonar detection</topic><topic>Sonar navigation</topic><topic>Underwater vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Xiang</creatorcontrib><creatorcontrib>Ren, Lu</creatorcontrib><creatorcontrib>Sun, Changyin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Xiang</au><au>Ren, Lu</au><au>Sun, Changyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Obstacle Detection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>34</volume><issue>11</issue><spage>9198</spage><epage>9208</epage><pages>9198-9208</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Due to the complexity of the ocean environment, an autonomous underwater vehicle (AUV) is disturbed by obstacles when performing tasks. Therefore, the research on underwater obstacle detection and avoidance is particularly important. Based on the images collected by a forward-looking sonar on an AUV, this article proposes an obstacle detection and avoidance algorithm. First, a deep learning-based obstacle candidate area detection algorithm is developed. This algorithm uses the You Only Look Once (YOLO) v3 network to determine obstacle candidate areas in a sonar image. Then, in the determined obstacle candidate areas, the obstacle detection algorithm based on the improved threshold segmentation algorithm is used to detect obstacles accurately. Finally, using the obstacle detection results obtained from the sonar images, an obstacle avoidance algorithm based on deep reinforcement learning (DRL) is developed to plan a reasonable obstacle avoidance path of an AUV. Experimental results show that the proposed algorithms improve obstacle detection accuracy and processing speed of sonar images. At the same time, the proposed algorithms ensure AUV navigation safety in a complex obstacle environment.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35294362</pmid><doi>10.1109/TNNLS.2022.3156907</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4530-8397</orcidid><orcidid>https://orcid.org/0000-0001-9269-334X</orcidid><orcidid>https://orcid.org/0000-0003-2448-6693</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-11, Vol.34 (11), p.9198-9208 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_2882571425 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autonomous underwater vehicle (AUV) Autonomous underwater vehicles Collision avoidance Complexity Deep learning Detection algorithms Feature extraction forward-looking sonar Image segmentation Machine learning Marine environment Navigation safety Obstacle avoidance obstacle detection and avoidance path planning Sonar Sonar detection Sonar navigation Underwater vehicles |
title | Research on Obstacle Detection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Obstacle%20Detection%20and%20Avoidance%20of%20Autonomous%20Underwater%20Vehicle%20Based%20on%20Forward-Looking%20Sonar&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Cao,%20Xiang&rft.date=2023-11-01&rft.volume=34&rft.issue=11&rft.spage=9198&rft.epage=9208&rft.pages=9198-9208&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3156907&rft_dat=%3Cproquest_RIE%3E2882571425%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882571425&rft_id=info:pmid/35294362&rft_ieee_id=9736998&rfr_iscdi=true |