Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin
Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, a...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2023-11, Vol.41 (11), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE journal on selected areas in communications |
container_volume | 41 |
creator | Okegbile, Samuel D. Cai, Jun Zheng, Hao Chen, Jiayuan Yi, Changyan |
description | Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, accuracy and the overall connectivity cost. This paper presents a new, secure, privacy-preserving and efficient human-to-virtual twin connectivity scheme for HDT by integrating three key techniques: differential privacy, federated multi-task learning and blockchain. Specifically, we adopt federated multi-task learning, a personalized learning method capable of providing higher accuracy, to capture the impact of heterogeneous environments. Next, we propose a new validation process based on the quality of trained models during the federated multi-task learning process to guarantee accurate and authorized model evolution in the virtual environment. The proposed framework accelerates the learning process without sacrificing accuracy, privacy and communication costs which, we believe, are non-negotiable requirements of HDT networks. Finally, we compare the proposed connectivity scheme with related solutions and show that the proposed scheme can enhance security, privacy and accuracy while reducing the overall connectivity cost. |
doi_str_mv | 10.1109/JSAC.2023.3310106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2882571337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10234396</ieee_id><sourcerecordid>2882571337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7589840c043db0773a0dd025c908439be8f46b3b4c9aa31d0d2b63154975beec3</originalsourceid><addsrcrecordid>eNpNkE9PwzAMxSMEEmPwAZA4ROLc4ST9kx6njTHQEEgMrlXauiNbl4403bQbH51W3YGTLfs9P-tHyC2DEWMQP7x8jCcjDlyMhGDAIDwjAxYE0gMAeU4GEAnhyYiFl-SqrtcAzPclH5DfqS4KtGicVmV5pO9W75VDOsMcbdvk9LUpnfaWqt7QBSprtFnRmVVbPFR2Q4vK0kfzrUzWzefNVhnPVd6Xtq5RJZ1UxmDm9F67I9WmF9CpXmnXbpcHba7JRaHKGm9OdUg-Z4_LydxbvD09T8YLLxMicl4UyFj6kIEv8hSiSCjIc-BBFoP0RZyiLPwwFamfxUoJlkPO01CwwI-jIEXMxJDc93d3tvppsHbJumqsaSMTLiUPItbmtCrWqzJb1bXFItlZvVX2mDBIOtBJBzrpQCcn0K3nrvdoRPyn56J9LBR_VMJ6vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882571337</pqid></control><display><type>article</type><title>Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin</title><source>IEEE Electronic Library (IEL)</source><creator>Okegbile, Samuel D. ; Cai, Jun ; Zheng, Hao ; Chen, Jiayuan ; Yi, Changyan</creator><creatorcontrib>Okegbile, Samuel D. ; Cai, Jun ; Zheng, Hao ; Chen, Jiayuan ; Yi, Changyan</creatorcontrib><description>Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, accuracy and the overall connectivity cost. This paper presents a new, secure, privacy-preserving and efficient human-to-virtual twin connectivity scheme for HDT by integrating three key techniques: differential privacy, federated multi-task learning and blockchain. Specifically, we adopt federated multi-task learning, a personalized learning method capable of providing higher accuracy, to capture the impact of heterogeneous environments. Next, we propose a new validation process based on the quality of trained models during the federated multi-task learning process to guarantee accurate and authorized model evolution in the virtual environment. The proposed framework accelerates the learning process without sacrificing accuracy, privacy and communication costs which, we believe, are non-negotiable requirements of HDT networks. Finally, we compare the proposed connectivity scheme with related solutions and show that the proposed scheme can enhance security, privacy and accuracy while reducing the overall connectivity cost.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2023.3310106</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Blockchain ; Computational modeling ; Connectivity ; Costs ; Cryptography ; digital twin ; Digital twins ; Evolution ; federated multi-task learning ; Learning ; Multitasking ; Optimization ; Privacy ; Security ; Virtual environments ; Virtual reality ; virtual twin</subject><ispartof>IEEE journal on selected areas in communications, 2023-11, Vol.41 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7589840c043db0773a0dd025c908439be8f46b3b4c9aa31d0d2b63154975beec3</citedby><cites>FETCH-LOGICAL-c337t-7589840c043db0773a0dd025c908439be8f46b3b4c9aa31d0d2b63154975beec3</cites><orcidid>0000-0002-9254-0404 ; 0000-0003-3714-3534 ; 0000-0002-2581-951X ; 0000-0002-3467-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10234396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10234396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Okegbile, Samuel D.</creatorcontrib><creatorcontrib>Cai, Jun</creatorcontrib><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Chen, Jiayuan</creatorcontrib><creatorcontrib>Yi, Changyan</creatorcontrib><title>Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, accuracy and the overall connectivity cost. This paper presents a new, secure, privacy-preserving and efficient human-to-virtual twin connectivity scheme for HDT by integrating three key techniques: differential privacy, federated multi-task learning and blockchain. Specifically, we adopt federated multi-task learning, a personalized learning method capable of providing higher accuracy, to capture the impact of heterogeneous environments. Next, we propose a new validation process based on the quality of trained models during the federated multi-task learning process to guarantee accurate and authorized model evolution in the virtual environment. The proposed framework accelerates the learning process without sacrificing accuracy, privacy and communication costs which, we believe, are non-negotiable requirements of HDT networks. Finally, we compare the proposed connectivity scheme with related solutions and show that the proposed scheme can enhance security, privacy and accuracy while reducing the overall connectivity cost.</description><subject>Accuracy</subject><subject>Blockchain</subject><subject>Computational modeling</subject><subject>Connectivity</subject><subject>Costs</subject><subject>Cryptography</subject><subject>digital twin</subject><subject>Digital twins</subject><subject>Evolution</subject><subject>federated multi-task learning</subject><subject>Learning</subject><subject>Multitasking</subject><subject>Optimization</subject><subject>Privacy</subject><subject>Security</subject><subject>Virtual environments</subject><subject>Virtual reality</subject><subject>virtual twin</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwzAMxSMEEmPwAZA4ROLc4ST9kx6njTHQEEgMrlXauiNbl4403bQbH51W3YGTLfs9P-tHyC2DEWMQP7x8jCcjDlyMhGDAIDwjAxYE0gMAeU4GEAnhyYiFl-SqrtcAzPclH5DfqS4KtGicVmV5pO9W75VDOsMcbdvk9LUpnfaWqt7QBSprtFnRmVVbPFR2Q4vK0kfzrUzWzefNVhnPVd6Xtq5RJZ1UxmDm9F67I9WmF9CpXmnXbpcHba7JRaHKGm9OdUg-Z4_LydxbvD09T8YLLxMicl4UyFj6kIEv8hSiSCjIc-BBFoP0RZyiLPwwFamfxUoJlkPO01CwwI-jIEXMxJDc93d3tvppsHbJumqsaSMTLiUPItbmtCrWqzJb1bXFItlZvVX2mDBIOtBJBzrpQCcn0K3nrvdoRPyn56J9LBR_VMJ6vQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Okegbile, Samuel D.</creator><creator>Cai, Jun</creator><creator>Zheng, Hao</creator><creator>Chen, Jiayuan</creator><creator>Yi, Changyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9254-0404</orcidid><orcidid>https://orcid.org/0000-0003-3714-3534</orcidid><orcidid>https://orcid.org/0000-0002-2581-951X</orcidid><orcidid>https://orcid.org/0000-0002-3467-0710</orcidid></search><sort><creationdate>20231101</creationdate><title>Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin</title><author>Okegbile, Samuel D. ; Cai, Jun ; Zheng, Hao ; Chen, Jiayuan ; Yi, Changyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7589840c043db0773a0dd025c908439be8f46b3b4c9aa31d0d2b63154975beec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Blockchain</topic><topic>Computational modeling</topic><topic>Connectivity</topic><topic>Costs</topic><topic>Cryptography</topic><topic>digital twin</topic><topic>Digital twins</topic><topic>Evolution</topic><topic>federated multi-task learning</topic><topic>Learning</topic><topic>Multitasking</topic><topic>Optimization</topic><topic>Privacy</topic><topic>Security</topic><topic>Virtual environments</topic><topic>Virtual reality</topic><topic>virtual twin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okegbile, Samuel D.</creatorcontrib><creatorcontrib>Cai, Jun</creatorcontrib><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Chen, Jiayuan</creatorcontrib><creatorcontrib>Yi, Changyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Okegbile, Samuel D.</au><au>Cai, Jun</au><au>Zheng, Hao</au><au>Chen, Jiayuan</au><au>Yi, Changyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>41</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, accuracy and the overall connectivity cost. This paper presents a new, secure, privacy-preserving and efficient human-to-virtual twin connectivity scheme for HDT by integrating three key techniques: differential privacy, federated multi-task learning and blockchain. Specifically, we adopt federated multi-task learning, a personalized learning method capable of providing higher accuracy, to capture the impact of heterogeneous environments. Next, we propose a new validation process based on the quality of trained models during the federated multi-task learning process to guarantee accurate and authorized model evolution in the virtual environment. The proposed framework accelerates the learning process without sacrificing accuracy, privacy and communication costs which, we believe, are non-negotiable requirements of HDT networks. Finally, we compare the proposed connectivity scheme with related solutions and show that the proposed scheme can enhance security, privacy and accuracy while reducing the overall connectivity cost.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2023.3310106</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9254-0404</orcidid><orcidid>https://orcid.org/0000-0003-3714-3534</orcidid><orcidid>https://orcid.org/0000-0002-2581-951X</orcidid><orcidid>https://orcid.org/0000-0002-3467-0710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2023-11, Vol.41 (11), p.1-1 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_proquest_journals_2882571337 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Blockchain Computational modeling Connectivity Costs Cryptography digital twin Digital twins Evolution federated multi-task learning Learning Multitasking Optimization Privacy Security Virtual environments Virtual reality virtual twin |
title | Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentially%20Private%20Federated%20Multi-Task%20Learning%20Framework%20for%20Enhancing%20Human-to-Virtual%20Connectivity%20in%20Human%20Digital%20Twin&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Okegbile,%20Samuel%20D.&rft.date=2023-11-01&rft.volume=41&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2023.3310106&rft_dat=%3Cproquest_RIE%3E2882571337%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882571337&rft_id=info:pmid/&rft_ieee_id=10234396&rfr_iscdi=true |