Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin

Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2023-11, Vol.41 (11), p.1-1
Hauptverfasser: Okegbile, Samuel D., Cai, Jun, Zheng, Hao, Chen, Jiayuan, Yi, Changyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE journal on selected areas in communications
container_volume 41
creator Okegbile, Samuel D.
Cai, Jun
Zheng, Hao
Chen, Jiayuan
Yi, Changyan
description Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, accuracy and the overall connectivity cost. This paper presents a new, secure, privacy-preserving and efficient human-to-virtual twin connectivity scheme for HDT by integrating three key techniques: differential privacy, federated multi-task learning and blockchain. Specifically, we adopt federated multi-task learning, a personalized learning method capable of providing higher accuracy, to capture the impact of heterogeneous environments. Next, we propose a new validation process based on the quality of trained models during the federated multi-task learning process to guarantee accurate and authorized model evolution in the virtual environment. The proposed framework accelerates the learning process without sacrificing accuracy, privacy and communication costs which, we believe, are non-negotiable requirements of HDT networks. Finally, we compare the proposed connectivity scheme with related solutions and show that the proposed scheme can enhance security, privacy and accuracy while reducing the overall connectivity cost.
doi_str_mv 10.1109/JSAC.2023.3310106
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2882571337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10234396</ieee_id><sourcerecordid>2882571337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7589840c043db0773a0dd025c908439be8f46b3b4c9aa31d0d2b63154975beec3</originalsourceid><addsrcrecordid>eNpNkE9PwzAMxSMEEmPwAZA4ROLc4ST9kx6njTHQEEgMrlXauiNbl4403bQbH51W3YGTLfs9P-tHyC2DEWMQP7x8jCcjDlyMhGDAIDwjAxYE0gMAeU4GEAnhyYiFl-SqrtcAzPclH5DfqS4KtGicVmV5pO9W75VDOsMcbdvk9LUpnfaWqt7QBSprtFnRmVVbPFR2Q4vK0kfzrUzWzefNVhnPVd6Xtq5RJZ1UxmDm9F67I9WmF9CpXmnXbpcHba7JRaHKGm9OdUg-Z4_LydxbvD09T8YLLxMicl4UyFj6kIEv8hSiSCjIc-BBFoP0RZyiLPwwFamfxUoJlkPO01CwwI-jIEXMxJDc93d3tvppsHbJumqsaSMTLiUPItbmtCrWqzJb1bXFItlZvVX2mDBIOtBJBzrpQCcn0K3nrvdoRPyn56J9LBR_VMJ6vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882571337</pqid></control><display><type>article</type><title>Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin</title><source>IEEE Electronic Library (IEL)</source><creator>Okegbile, Samuel D. ; Cai, Jun ; Zheng, Hao ; Chen, Jiayuan ; Yi, Changyan</creator><creatorcontrib>Okegbile, Samuel D. ; Cai, Jun ; Zheng, Hao ; Chen, Jiayuan ; Yi, Changyan</creatorcontrib><description>Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, accuracy and the overall connectivity cost. This paper presents a new, secure, privacy-preserving and efficient human-to-virtual twin connectivity scheme for HDT by integrating three key techniques: differential privacy, federated multi-task learning and blockchain. Specifically, we adopt federated multi-task learning, a personalized learning method capable of providing higher accuracy, to capture the impact of heterogeneous environments. Next, we propose a new validation process based on the quality of trained models during the federated multi-task learning process to guarantee accurate and authorized model evolution in the virtual environment. The proposed framework accelerates the learning process without sacrificing accuracy, privacy and communication costs which, we believe, are non-negotiable requirements of HDT networks. Finally, we compare the proposed connectivity scheme with related solutions and show that the proposed scheme can enhance security, privacy and accuracy while reducing the overall connectivity cost.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2023.3310106</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Blockchain ; Computational modeling ; Connectivity ; Costs ; Cryptography ; digital twin ; Digital twins ; Evolution ; federated multi-task learning ; Learning ; Multitasking ; Optimization ; Privacy ; Security ; Virtual environments ; Virtual reality ; virtual twin</subject><ispartof>IEEE journal on selected areas in communications, 2023-11, Vol.41 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7589840c043db0773a0dd025c908439be8f46b3b4c9aa31d0d2b63154975beec3</citedby><cites>FETCH-LOGICAL-c337t-7589840c043db0773a0dd025c908439be8f46b3b4c9aa31d0d2b63154975beec3</cites><orcidid>0000-0002-9254-0404 ; 0000-0003-3714-3534 ; 0000-0002-2581-951X ; 0000-0002-3467-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10234396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10234396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Okegbile, Samuel D.</creatorcontrib><creatorcontrib>Cai, Jun</creatorcontrib><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Chen, Jiayuan</creatorcontrib><creatorcontrib>Yi, Changyan</creatorcontrib><title>Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, accuracy and the overall connectivity cost. This paper presents a new, secure, privacy-preserving and efficient human-to-virtual twin connectivity scheme for HDT by integrating three key techniques: differential privacy, federated multi-task learning and blockchain. Specifically, we adopt federated multi-task learning, a personalized learning method capable of providing higher accuracy, to capture the impact of heterogeneous environments. Next, we propose a new validation process based on the quality of trained models during the federated multi-task learning process to guarantee accurate and authorized model evolution in the virtual environment. The proposed framework accelerates the learning process without sacrificing accuracy, privacy and communication costs which, we believe, are non-negotiable requirements of HDT networks. Finally, we compare the proposed connectivity scheme with related solutions and show that the proposed scheme can enhance security, privacy and accuracy while reducing the overall connectivity cost.</description><subject>Accuracy</subject><subject>Blockchain</subject><subject>Computational modeling</subject><subject>Connectivity</subject><subject>Costs</subject><subject>Cryptography</subject><subject>digital twin</subject><subject>Digital twins</subject><subject>Evolution</subject><subject>federated multi-task learning</subject><subject>Learning</subject><subject>Multitasking</subject><subject>Optimization</subject><subject>Privacy</subject><subject>Security</subject><subject>Virtual environments</subject><subject>Virtual reality</subject><subject>virtual twin</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwzAMxSMEEmPwAZA4ROLc4ST9kx6njTHQEEgMrlXauiNbl4403bQbH51W3YGTLfs9P-tHyC2DEWMQP7x8jCcjDlyMhGDAIDwjAxYE0gMAeU4GEAnhyYiFl-SqrtcAzPclH5DfqS4KtGicVmV5pO9W75VDOsMcbdvk9LUpnfaWqt7QBSprtFnRmVVbPFR2Q4vK0kfzrUzWzefNVhnPVd6Xtq5RJZ1UxmDm9F67I9WmF9CpXmnXbpcHba7JRaHKGm9OdUg-Z4_LydxbvD09T8YLLxMicl4UyFj6kIEv8hSiSCjIc-BBFoP0RZyiLPwwFamfxUoJlkPO01CwwI-jIEXMxJDc93d3tvppsHbJumqsaSMTLiUPItbmtCrWqzJb1bXFItlZvVX2mDBIOtBJBzrpQCcn0K3nrvdoRPyn56J9LBR_VMJ6vQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Okegbile, Samuel D.</creator><creator>Cai, Jun</creator><creator>Zheng, Hao</creator><creator>Chen, Jiayuan</creator><creator>Yi, Changyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9254-0404</orcidid><orcidid>https://orcid.org/0000-0003-3714-3534</orcidid><orcidid>https://orcid.org/0000-0002-2581-951X</orcidid><orcidid>https://orcid.org/0000-0002-3467-0710</orcidid></search><sort><creationdate>20231101</creationdate><title>Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin</title><author>Okegbile, Samuel D. ; Cai, Jun ; Zheng, Hao ; Chen, Jiayuan ; Yi, Changyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7589840c043db0773a0dd025c908439be8f46b3b4c9aa31d0d2b63154975beec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Blockchain</topic><topic>Computational modeling</topic><topic>Connectivity</topic><topic>Costs</topic><topic>Cryptography</topic><topic>digital twin</topic><topic>Digital twins</topic><topic>Evolution</topic><topic>federated multi-task learning</topic><topic>Learning</topic><topic>Multitasking</topic><topic>Optimization</topic><topic>Privacy</topic><topic>Security</topic><topic>Virtual environments</topic><topic>Virtual reality</topic><topic>virtual twin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okegbile, Samuel D.</creatorcontrib><creatorcontrib>Cai, Jun</creatorcontrib><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Chen, Jiayuan</creatorcontrib><creatorcontrib>Yi, Changyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Okegbile, Samuel D.</au><au>Cai, Jun</au><au>Zheng, Hao</au><au>Chen, Jiayuan</au><au>Yi, Changyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>41</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, accuracy and the overall connectivity cost. This paper presents a new, secure, privacy-preserving and efficient human-to-virtual twin connectivity scheme for HDT by integrating three key techniques: differential privacy, federated multi-task learning and blockchain. Specifically, we adopt federated multi-task learning, a personalized learning method capable of providing higher accuracy, to capture the impact of heterogeneous environments. Next, we propose a new validation process based on the quality of trained models during the federated multi-task learning process to guarantee accurate and authorized model evolution in the virtual environment. The proposed framework accelerates the learning process without sacrificing accuracy, privacy and communication costs which, we believe, are non-negotiable requirements of HDT networks. Finally, we compare the proposed connectivity scheme with related solutions and show that the proposed scheme can enhance security, privacy and accuracy while reducing the overall connectivity cost.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2023.3310106</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9254-0404</orcidid><orcidid>https://orcid.org/0000-0003-3714-3534</orcidid><orcidid>https://orcid.org/0000-0002-2581-951X</orcidid><orcidid>https://orcid.org/0000-0002-3467-0710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2023-11, Vol.41 (11), p.1-1
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_journals_2882571337
source IEEE Electronic Library (IEL)
subjects Accuracy
Blockchain
Computational modeling
Connectivity
Costs
Cryptography
digital twin
Digital twins
Evolution
federated multi-task learning
Learning
Multitasking
Optimization
Privacy
Security
Virtual environments
Virtual reality
virtual twin
title Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentially%20Private%20Federated%20Multi-Task%20Learning%20Framework%20for%20Enhancing%20Human-to-Virtual%20Connectivity%20in%20Human%20Digital%20Twin&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Okegbile,%20Samuel%20D.&rft.date=2023-11-01&rft.volume=41&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2023.3310106&rft_dat=%3Cproquest_RIE%3E2882571337%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882571337&rft_id=info:pmid/&rft_ieee_id=10234396&rfr_iscdi=true