Real-Time Implementation of a Frequency Shifter for Enhancement of Heart Sounds Perception on VLIW DSP Platform
Auscultation of heart sounds is important to perform cardiovascular assessment. External noises may limit heart sound perception. In addition, heart sound bandwidth is concentrated at very low frequencies, where the human ear has poor sensitivity. Therefore, the acoustic perception of the operator c...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-10, Vol.12 (20), p.4359 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 4359 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Muto, Vincenzo Andreozzi, Emilio Cappelli, Carmela Centracchio, Jessica Di Meo, Gennaro Esposito, Daniele Bifulco, Paolo De Caro, Davide |
description | Auscultation of heart sounds is important to perform cardiovascular assessment. External noises may limit heart sound perception. In addition, heart sound bandwidth is concentrated at very low frequencies, where the human ear has poor sensitivity. Therefore, the acoustic perception of the operator can be significantly improved by shifting the heart sound spectrum toward higher frequencies. This study proposes a real-time frequency shifter based on the Hilbert transform. Key system components are the Hilbert transformer implemented as a Finite Impulse Response (FIR) filter, and a Direct Digital Frequency Synthesizer (DDFS), which allows agile modification of the frequency shift. The frequency shifter has been implemented on a VLIW Digital Signal Processor (DSP) by devising a novel piecewise quadratic approximation technique for efficient DDFS implementation. The performance has been compared with other DDFS implementations both considering piecewise linear technique and sine/cosine standard library functions of the DSP. Piecewise techniques allow a more than 50% reduction in execution time compared to the DSP library. Piecewise quadratic technique also allows a more than 50% reduction in total required memory size in comparison to the piecewise linear. The theoretical analysis of the dynamic power dissipation exhibits a more than 20% reduction using piecewise techniques with respect to the DSP library. The real-time operation has been also verified on the DSK6713 rapid prototyping board by Texas Instruments C6713 DSP. Audiologic tests have also been performed to assess the actual improvement of heart sound perception. To this aim, heart sound recordings were corrupted by additive white Gaussian noise, crowded street noise, and helicopter noise, with different signal-to-noise ratios. All recordings were collected from public databases. Statistical analyses of the audiological test results confirm that the proposed approach provides a clear improvement in heartbeat perception in noisy environments. |
doi_str_mv | 10.3390/electronics12204359 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2882562905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772062605</galeid><sourcerecordid>A772062605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-40527c97bfe3ca54b8ab85803736cb78e7cac56aae4ca9cf440ca40d378853493</originalsourceid><addsrcrecordid>eNptkU1LAzEQhhdRUNRf4CXgeTVNdjfJUfwsFCy26nGZTica2U1qkh76712toIIzhxmG532HYYriZMTPpDT8nDrCHIN3mEZC8ErWZqc4EFyZ0ggjdn_1-8VxSm98CDOSWvKDIjwQdOXc9cTG_aqjnnyG7IJnwTJgN5He1-Rxw2avzmaKzIbIrv0rePxiP7E7gpjZLKz9MrEpRaTV1sGzp8n4mV3NpmzaQR6k_VGxZ6FLdPxdD4vHm-v55V05ub8dX15MSpTa5LLitVBo1MKSRKirhYaFrjWXSja4UJoUAtYNAFUIBm1VcYSKL6XSupaVkYfF6dZ3FcNwQcrtW1hHP6xshdaiboTh9Q_1Ah21ztuQI2DvErYXSgneiOaLOvuHGnJJvcPgybph_kcgtwKMIaVItl1F10PctCPefv6s_edn8gPp_Iua</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882562905</pqid></control><display><type>article</type><title>Real-Time Implementation of a Frequency Shifter for Enhancement of Heart Sounds Perception on VLIW DSP Platform</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Muto, Vincenzo ; Andreozzi, Emilio ; Cappelli, Carmela ; Centracchio, Jessica ; Di Meo, Gennaro ; Esposito, Daniele ; Bifulco, Paolo ; De Caro, Davide</creator><creatorcontrib>Muto, Vincenzo ; Andreozzi, Emilio ; Cappelli, Carmela ; Centracchio, Jessica ; Di Meo, Gennaro ; Esposito, Daniele ; Bifulco, Paolo ; De Caro, Davide</creatorcontrib><description>Auscultation of heart sounds is important to perform cardiovascular assessment. External noises may limit heart sound perception. In addition, heart sound bandwidth is concentrated at very low frequencies, where the human ear has poor sensitivity. Therefore, the acoustic perception of the operator can be significantly improved by shifting the heart sound spectrum toward higher frequencies. This study proposes a real-time frequency shifter based on the Hilbert transform. Key system components are the Hilbert transformer implemented as a Finite Impulse Response (FIR) filter, and a Direct Digital Frequency Synthesizer (DDFS), which allows agile modification of the frequency shift. The frequency shifter has been implemented on a VLIW Digital Signal Processor (DSP) by devising a novel piecewise quadratic approximation technique for efficient DDFS implementation. The performance has been compared with other DDFS implementations both considering piecewise linear technique and sine/cosine standard library functions of the DSP. Piecewise techniques allow a more than 50% reduction in execution time compared to the DSP library. Piecewise quadratic technique also allows a more than 50% reduction in total required memory size in comparison to the piecewise linear. The theoretical analysis of the dynamic power dissipation exhibits a more than 20% reduction using piecewise techniques with respect to the DSP library. The real-time operation has been also verified on the DSK6713 rapid prototyping board by Texas Instruments C6713 DSP. Audiologic tests have also been performed to assess the actual improvement of heart sound perception. To this aim, heart sound recordings were corrupted by additive white Gaussian noise, crowded street noise, and helicopter noise, with different signal-to-noise ratios. All recordings were collected from public databases. Statistical analyses of the audiological test results confirm that the proposed approach provides a clear improvement in heartbeat perception in noisy environments.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12204359</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Auscultation ; Cardiovascular diseases ; Diagnosis ; Digital signal processing ; Digital signal processors ; Emergency medical care ; Energy dissipation ; FIR filters ; Fourier transforms ; Frequency shift ; Frequency shifters ; Frequency synthesizers ; Heart ; Helicopters ; Hilbert transformation ; Human subjects ; Libraries ; Methods ; Microprocessors ; Noise ; Perception ; Perceptions ; Random noise ; Rapid prototyping ; Real time operation ; Sensors ; Signal processing ; Sound ; Sound recordings ; Sounds ; Statistical analysis ; Trigonometric functions ; Very Low Frequencies ; Wavelet transforms</subject><ispartof>Electronics (Basel), 2023-10, Vol.12 (20), p.4359</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-40527c97bfe3ca54b8ab85803736cb78e7cac56aae4ca9cf440ca40d378853493</citedby><cites>FETCH-LOGICAL-c389t-40527c97bfe3ca54b8ab85803736cb78e7cac56aae4ca9cf440ca40d378853493</cites><orcidid>0000-0003-0716-8431 ; 0000-0002-9652-8541 ; 0000-0002-9585-971X ; 0000-0001-8479-2567 ; 0000-0003-4829-3941 ; 0000-0003-3422-8727 ; 0000-0003-0204-0949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Muto, Vincenzo</creatorcontrib><creatorcontrib>Andreozzi, Emilio</creatorcontrib><creatorcontrib>Cappelli, Carmela</creatorcontrib><creatorcontrib>Centracchio, Jessica</creatorcontrib><creatorcontrib>Di Meo, Gennaro</creatorcontrib><creatorcontrib>Esposito, Daniele</creatorcontrib><creatorcontrib>Bifulco, Paolo</creatorcontrib><creatorcontrib>De Caro, Davide</creatorcontrib><title>Real-Time Implementation of a Frequency Shifter for Enhancement of Heart Sounds Perception on VLIW DSP Platform</title><title>Electronics (Basel)</title><description>Auscultation of heart sounds is important to perform cardiovascular assessment. External noises may limit heart sound perception. In addition, heart sound bandwidth is concentrated at very low frequencies, where the human ear has poor sensitivity. Therefore, the acoustic perception of the operator can be significantly improved by shifting the heart sound spectrum toward higher frequencies. This study proposes a real-time frequency shifter based on the Hilbert transform. Key system components are the Hilbert transformer implemented as a Finite Impulse Response (FIR) filter, and a Direct Digital Frequency Synthesizer (DDFS), which allows agile modification of the frequency shift. The frequency shifter has been implemented on a VLIW Digital Signal Processor (DSP) by devising a novel piecewise quadratic approximation technique for efficient DDFS implementation. The performance has been compared with other DDFS implementations both considering piecewise linear technique and sine/cosine standard library functions of the DSP. Piecewise techniques allow a more than 50% reduction in execution time compared to the DSP library. Piecewise quadratic technique also allows a more than 50% reduction in total required memory size in comparison to the piecewise linear. The theoretical analysis of the dynamic power dissipation exhibits a more than 20% reduction using piecewise techniques with respect to the DSP library. The real-time operation has been also verified on the DSK6713 rapid prototyping board by Texas Instruments C6713 DSP. Audiologic tests have also been performed to assess the actual improvement of heart sound perception. To this aim, heart sound recordings were corrupted by additive white Gaussian noise, crowded street noise, and helicopter noise, with different signal-to-noise ratios. All recordings were collected from public databases. Statistical analyses of the audiological test results confirm that the proposed approach provides a clear improvement in heartbeat perception in noisy environments.</description><subject>Algorithms</subject><subject>Auscultation</subject><subject>Cardiovascular diseases</subject><subject>Diagnosis</subject><subject>Digital signal processing</subject><subject>Digital signal processors</subject><subject>Emergency medical care</subject><subject>Energy dissipation</subject><subject>FIR filters</subject><subject>Fourier transforms</subject><subject>Frequency shift</subject><subject>Frequency shifters</subject><subject>Frequency synthesizers</subject><subject>Heart</subject><subject>Helicopters</subject><subject>Hilbert transformation</subject><subject>Human subjects</subject><subject>Libraries</subject><subject>Methods</subject><subject>Microprocessors</subject><subject>Noise</subject><subject>Perception</subject><subject>Perceptions</subject><subject>Random noise</subject><subject>Rapid prototyping</subject><subject>Real time operation</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Sound</subject><subject>Sound recordings</subject><subject>Sounds</subject><subject>Statistical analysis</subject><subject>Trigonometric functions</subject><subject>Very Low Frequencies</subject><subject>Wavelet transforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkU1LAzEQhhdRUNRf4CXgeTVNdjfJUfwsFCy26nGZTica2U1qkh76712toIIzhxmG532HYYriZMTPpDT8nDrCHIN3mEZC8ErWZqc4EFyZ0ggjdn_1-8VxSm98CDOSWvKDIjwQdOXc9cTG_aqjnnyG7IJnwTJgN5He1-Rxw2avzmaKzIbIrv0rePxiP7E7gpjZLKz9MrEpRaTV1sGzp8n4mV3NpmzaQR6k_VGxZ6FLdPxdD4vHm-v55V05ub8dX15MSpTa5LLitVBo1MKSRKirhYaFrjWXSja4UJoUAtYNAFUIBm1VcYSKL6XSupaVkYfF6dZ3FcNwQcrtW1hHP6xshdaiboTh9Q_1Ah21ztuQI2DvErYXSgneiOaLOvuHGnJJvcPgybph_kcgtwKMIaVItl1F10PctCPefv6s_edn8gPp_Iua</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Muto, Vincenzo</creator><creator>Andreozzi, Emilio</creator><creator>Cappelli, Carmela</creator><creator>Centracchio, Jessica</creator><creator>Di Meo, Gennaro</creator><creator>Esposito, Daniele</creator><creator>Bifulco, Paolo</creator><creator>De Caro, Davide</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0716-8431</orcidid><orcidid>https://orcid.org/0000-0002-9652-8541</orcidid><orcidid>https://orcid.org/0000-0002-9585-971X</orcidid><orcidid>https://orcid.org/0000-0001-8479-2567</orcidid><orcidid>https://orcid.org/0000-0003-4829-3941</orcidid><orcidid>https://orcid.org/0000-0003-3422-8727</orcidid><orcidid>https://orcid.org/0000-0003-0204-0949</orcidid></search><sort><creationdate>20231001</creationdate><title>Real-Time Implementation of a Frequency Shifter for Enhancement of Heart Sounds Perception on VLIW DSP Platform</title><author>Muto, Vincenzo ; Andreozzi, Emilio ; Cappelli, Carmela ; Centracchio, Jessica ; Di Meo, Gennaro ; Esposito, Daniele ; Bifulco, Paolo ; De Caro, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-40527c97bfe3ca54b8ab85803736cb78e7cac56aae4ca9cf440ca40d378853493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Auscultation</topic><topic>Cardiovascular diseases</topic><topic>Diagnosis</topic><topic>Digital signal processing</topic><topic>Digital signal processors</topic><topic>Emergency medical care</topic><topic>Energy dissipation</topic><topic>FIR filters</topic><topic>Fourier transforms</topic><topic>Frequency shift</topic><topic>Frequency shifters</topic><topic>Frequency synthesizers</topic><topic>Heart</topic><topic>Helicopters</topic><topic>Hilbert transformation</topic><topic>Human subjects</topic><topic>Libraries</topic><topic>Methods</topic><topic>Microprocessors</topic><topic>Noise</topic><topic>Perception</topic><topic>Perceptions</topic><topic>Random noise</topic><topic>Rapid prototyping</topic><topic>Real time operation</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Sound</topic><topic>Sound recordings</topic><topic>Sounds</topic><topic>Statistical analysis</topic><topic>Trigonometric functions</topic><topic>Very Low Frequencies</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muto, Vincenzo</creatorcontrib><creatorcontrib>Andreozzi, Emilio</creatorcontrib><creatorcontrib>Cappelli, Carmela</creatorcontrib><creatorcontrib>Centracchio, Jessica</creatorcontrib><creatorcontrib>Di Meo, Gennaro</creatorcontrib><creatorcontrib>Esposito, Daniele</creatorcontrib><creatorcontrib>Bifulco, Paolo</creatorcontrib><creatorcontrib>De Caro, Davide</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muto, Vincenzo</au><au>Andreozzi, Emilio</au><au>Cappelli, Carmela</au><au>Centracchio, Jessica</au><au>Di Meo, Gennaro</au><au>Esposito, Daniele</au><au>Bifulco, Paolo</au><au>De Caro, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Implementation of a Frequency Shifter for Enhancement of Heart Sounds Perception on VLIW DSP Platform</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>12</volume><issue>20</issue><spage>4359</spage><pages>4359-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Auscultation of heart sounds is important to perform cardiovascular assessment. External noises may limit heart sound perception. In addition, heart sound bandwidth is concentrated at very low frequencies, where the human ear has poor sensitivity. Therefore, the acoustic perception of the operator can be significantly improved by shifting the heart sound spectrum toward higher frequencies. This study proposes a real-time frequency shifter based on the Hilbert transform. Key system components are the Hilbert transformer implemented as a Finite Impulse Response (FIR) filter, and a Direct Digital Frequency Synthesizer (DDFS), which allows agile modification of the frequency shift. The frequency shifter has been implemented on a VLIW Digital Signal Processor (DSP) by devising a novel piecewise quadratic approximation technique for efficient DDFS implementation. The performance has been compared with other DDFS implementations both considering piecewise linear technique and sine/cosine standard library functions of the DSP. Piecewise techniques allow a more than 50% reduction in execution time compared to the DSP library. Piecewise quadratic technique also allows a more than 50% reduction in total required memory size in comparison to the piecewise linear. The theoretical analysis of the dynamic power dissipation exhibits a more than 20% reduction using piecewise techniques with respect to the DSP library. The real-time operation has been also verified on the DSK6713 rapid prototyping board by Texas Instruments C6713 DSP. Audiologic tests have also been performed to assess the actual improvement of heart sound perception. To this aim, heart sound recordings were corrupted by additive white Gaussian noise, crowded street noise, and helicopter noise, with different signal-to-noise ratios. All recordings were collected from public databases. Statistical analyses of the audiological test results confirm that the proposed approach provides a clear improvement in heartbeat perception in noisy environments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12204359</doi><orcidid>https://orcid.org/0000-0003-0716-8431</orcidid><orcidid>https://orcid.org/0000-0002-9652-8541</orcidid><orcidid>https://orcid.org/0000-0002-9585-971X</orcidid><orcidid>https://orcid.org/0000-0001-8479-2567</orcidid><orcidid>https://orcid.org/0000-0003-4829-3941</orcidid><orcidid>https://orcid.org/0000-0003-3422-8727</orcidid><orcidid>https://orcid.org/0000-0003-0204-0949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-10, Vol.12 (20), p.4359 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2882562905 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Auscultation Cardiovascular diseases Diagnosis Digital signal processing Digital signal processors Emergency medical care Energy dissipation FIR filters Fourier transforms Frequency shift Frequency shifters Frequency synthesizers Heart Helicopters Hilbert transformation Human subjects Libraries Methods Microprocessors Noise Perception Perceptions Random noise Rapid prototyping Real time operation Sensors Signal processing Sound Sound recordings Sounds Statistical analysis Trigonometric functions Very Low Frequencies Wavelet transforms |
title | Real-Time Implementation of a Frequency Shifter for Enhancement of Heart Sounds Perception on VLIW DSP Platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Implementation%20of%20a%20Frequency%20Shifter%20for%20Enhancement%20of%20Heart%20Sounds%20Perception%20on%20VLIW%20DSP%20Platform&rft.jtitle=Electronics%20(Basel)&rft.au=Muto,%20Vincenzo&rft.date=2023-10-01&rft.volume=12&rft.issue=20&rft.spage=4359&rft.pages=4359-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12204359&rft_dat=%3Cgale_proqu%3EA772062605%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882562905&rft_id=info:pmid/&rft_galeid=A772062605&rfr_iscdi=true |