Intelligent Design Prediction of a Circular Polarized Antenna for CubeSat Application Using Machine Learning Algorithms

This paper presents an intelligent design method for a corner-truncated microstrip patch antenna (CTMPA) operating at 32 GHz using various well-known machine learning (ML) techniques. Our objectives are to obtain a gain of >5 dBic across a 10% bandwidth, an axial ratio (AR) of

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-10, Vol.12 (20), p.4195
Hauptverfasser: Uddin, Md Nazim, Islam, Md Khadimul, Ortiz, Michael, Alwan, Elias A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 4195
container_title Electronics (Basel)
container_volume 12
creator Uddin, Md Nazim
Islam, Md Khadimul
Ortiz, Michael
Alwan, Elias A.
description This paper presents an intelligent design method for a corner-truncated microstrip patch antenna (CTMPA) operating at 32 GHz using various well-known machine learning (ML) techniques. Our objectives are to obtain a gain of >5 dBic across a 10% bandwidth, an axial ratio (AR) of
doi_str_mv 10.3390/electronics12204195
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2882549791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772062441</galeid><sourcerecordid>A772062441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-61eebe3f3e3d7fd81618988a964888866635e47e528ca463b724219b323b4e3</originalsourceid><addsrcrecordid>eNptUU1LAzEQDaJgqf0FXgKeWzcfm02OS_0qVCxUz0s2O7tN2SY1SRH99W6tBw--gZnhMW8G5iF0TbIZYyq7hR5MCt5ZEwmlGScqP0MjmhVqqqii53_6SzSJcZsNUIRJlo3Qx8Il6HvbgUv4DqLtHF4FaKxJ1jvsW6zx3AZz6HXAKz9k-wUNLgeVcxq3PuD5oYa1Trjc73tr9I_uLVrX4WdtNtYBXoIO7kiUfeeDTZtdvEIXre4jTH7rGK0f7l_nT9Ply-NiXi6nhgmSpoIA1MBaBqwp2kYSQaSSUivB5QAhBMuBF5BTaTQXrC4op0TVjLKaAxujm9PWffDvB4ip2vpDcMPBikpJc66K4RFjNDtNdbqHyrrWp6DNEA3srPEOWjvwZVHQTFDOjwJ2EpjgYwzQVvtgdzp8ViSrjp5U_3jCvgFj5IKN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882549791</pqid></control><display><type>article</type><title>Intelligent Design Prediction of a Circular Polarized Antenna for CubeSat Application Using Machine Learning Algorithms</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Uddin, Md Nazim ; Islam, Md Khadimul ; Ortiz, Michael ; Alwan, Elias A.</creator><creatorcontrib>Uddin, Md Nazim ; Islam, Md Khadimul ; Ortiz, Michael ; Alwan, Elias A.</creatorcontrib><description>This paper presents an intelligent design method for a corner-truncated microstrip patch antenna (CTMPA) operating at 32 GHz using various well-known machine learning (ML) techniques. Our objectives are to obtain a gain of &gt;5 dBic across a 10% bandwidth, an axial ratio (AR) of &lt;3 dB, and a return loss of &lt;−10 dB. First, a dataset of 715 full-wave simulated samples is analyzed with four distinct antenna characteristics (viz. features), along with the related computed |S11|, gain, and AR. Using mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and R2 score, 12 ML regression models were examined to compare the training data with the new predicted values. Next, the model that best satisfies our objectives was chosen. Results showed that the artificial neural network (ANN) followed by k-nearest neighbor (KNN) regression produced the lowest error compared to all tested ML models. The design parameters that achieved our intended objectives were computed using the predicted results. The predicted design was validated using a full-wave simulation and a prototype measurement.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12204195</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Antennas ; Antennas (Electronics) ; Artificial neural networks ; Computation ; Computer simulation ; Cubesat ; Data mining ; Datasets ; Decision trees ; Design and construction ; Design optimization ; Design parameters ; Machine learning ; Mean square errors ; Microwave wiring ; Neural networks ; Patch antennas ; Regression analysis ; Regression models ; Regularization methods ; Root-mean-square errors ; Simulation</subject><ispartof>Electronics (Basel), 2023-10, Vol.12 (20), p.4195</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-61eebe3f3e3d7fd81618988a964888866635e47e528ca463b724219b323b4e3</citedby><cites>FETCH-LOGICAL-c361t-61eebe3f3e3d7fd81618988a964888866635e47e528ca463b724219b323b4e3</cites><orcidid>0000-0002-4035-9347 ; 0000-0002-6011-0207 ; 0009-0008-6179-4111 ; 0000-0001-6406-4618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Uddin, Md Nazim</creatorcontrib><creatorcontrib>Islam, Md Khadimul</creatorcontrib><creatorcontrib>Ortiz, Michael</creatorcontrib><creatorcontrib>Alwan, Elias A.</creatorcontrib><title>Intelligent Design Prediction of a Circular Polarized Antenna for CubeSat Application Using Machine Learning Algorithms</title><title>Electronics (Basel)</title><description>This paper presents an intelligent design method for a corner-truncated microstrip patch antenna (CTMPA) operating at 32 GHz using various well-known machine learning (ML) techniques. Our objectives are to obtain a gain of &gt;5 dBic across a 10% bandwidth, an axial ratio (AR) of &lt;3 dB, and a return loss of &lt;−10 dB. First, a dataset of 715 full-wave simulated samples is analyzed with four distinct antenna characteristics (viz. features), along with the related computed |S11|, gain, and AR. Using mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and R2 score, 12 ML regression models were examined to compare the training data with the new predicted values. Next, the model that best satisfies our objectives was chosen. Results showed that the artificial neural network (ANN) followed by k-nearest neighbor (KNN) regression produced the lowest error compared to all tested ML models. The design parameters that achieved our intended objectives were computed using the predicted results. The predicted design was validated using a full-wave simulation and a prototype measurement.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Antennas (Electronics)</subject><subject>Artificial neural networks</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Cubesat</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Design and construction</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Machine learning</subject><subject>Mean square errors</subject><subject>Microwave wiring</subject><subject>Neural networks</subject><subject>Patch antennas</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Regularization methods</subject><subject>Root-mean-square errors</subject><subject>Simulation</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUU1LAzEQDaJgqf0FXgKeWzcfm02OS_0qVCxUz0s2O7tN2SY1SRH99W6tBw--gZnhMW8G5iF0TbIZYyq7hR5MCt5ZEwmlGScqP0MjmhVqqqii53_6SzSJcZsNUIRJlo3Qx8Il6HvbgUv4DqLtHF4FaKxJ1jvsW6zx3AZz6HXAKz9k-wUNLgeVcxq3PuD5oYa1Trjc73tr9I_uLVrX4WdtNtYBXoIO7kiUfeeDTZtdvEIXre4jTH7rGK0f7l_nT9Ply-NiXi6nhgmSpoIA1MBaBqwp2kYSQaSSUivB5QAhBMuBF5BTaTQXrC4op0TVjLKaAxujm9PWffDvB4ip2vpDcMPBikpJc66K4RFjNDtNdbqHyrrWp6DNEA3srPEOWjvwZVHQTFDOjwJ2EpjgYwzQVvtgdzp8ViSrjp5U_3jCvgFj5IKN</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Uddin, Md Nazim</creator><creator>Islam, Md Khadimul</creator><creator>Ortiz, Michael</creator><creator>Alwan, Elias A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4035-9347</orcidid><orcidid>https://orcid.org/0000-0002-6011-0207</orcidid><orcidid>https://orcid.org/0009-0008-6179-4111</orcidid><orcidid>https://orcid.org/0000-0001-6406-4618</orcidid></search><sort><creationdate>20231001</creationdate><title>Intelligent Design Prediction of a Circular Polarized Antenna for CubeSat Application Using Machine Learning Algorithms</title><author>Uddin, Md Nazim ; Islam, Md Khadimul ; Ortiz, Michael ; Alwan, Elias A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-61eebe3f3e3d7fd81618988a964888866635e47e528ca463b724219b323b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Antennas (Electronics)</topic><topic>Artificial neural networks</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Cubesat</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Design and construction</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Machine learning</topic><topic>Mean square errors</topic><topic>Microwave wiring</topic><topic>Neural networks</topic><topic>Patch antennas</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Regularization methods</topic><topic>Root-mean-square errors</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uddin, Md Nazim</creatorcontrib><creatorcontrib>Islam, Md Khadimul</creatorcontrib><creatorcontrib>Ortiz, Michael</creatorcontrib><creatorcontrib>Alwan, Elias A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uddin, Md Nazim</au><au>Islam, Md Khadimul</au><au>Ortiz, Michael</au><au>Alwan, Elias A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Design Prediction of a Circular Polarized Antenna for CubeSat Application Using Machine Learning Algorithms</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>12</volume><issue>20</issue><spage>4195</spage><pages>4195-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper presents an intelligent design method for a corner-truncated microstrip patch antenna (CTMPA) operating at 32 GHz using various well-known machine learning (ML) techniques. Our objectives are to obtain a gain of &gt;5 dBic across a 10% bandwidth, an axial ratio (AR) of &lt;3 dB, and a return loss of &lt;−10 dB. First, a dataset of 715 full-wave simulated samples is analyzed with four distinct antenna characteristics (viz. features), along with the related computed |S11|, gain, and AR. Using mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and R2 score, 12 ML regression models were examined to compare the training data with the new predicted values. Next, the model that best satisfies our objectives was chosen. Results showed that the artificial neural network (ANN) followed by k-nearest neighbor (KNN) regression produced the lowest error compared to all tested ML models. The design parameters that achieved our intended objectives were computed using the predicted results. The predicted design was validated using a full-wave simulation and a prototype measurement.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12204195</doi><orcidid>https://orcid.org/0000-0002-4035-9347</orcidid><orcidid>https://orcid.org/0000-0002-6011-0207</orcidid><orcidid>https://orcid.org/0009-0008-6179-4111</orcidid><orcidid>https://orcid.org/0000-0001-6406-4618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-10, Vol.12 (20), p.4195
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2882549791
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Antennas
Antennas (Electronics)
Artificial neural networks
Computation
Computer simulation
Cubesat
Data mining
Datasets
Decision trees
Design and construction
Design optimization
Design parameters
Machine learning
Mean square errors
Microwave wiring
Neural networks
Patch antennas
Regression analysis
Regression models
Regularization methods
Root-mean-square errors
Simulation
title Intelligent Design Prediction of a Circular Polarized Antenna for CubeSat Application Using Machine Learning Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Design%20Prediction%20of%20a%20Circular%20Polarized%20Antenna%20for%20CubeSat%20Application%20Using%20Machine%20Learning%20Algorithms&rft.jtitle=Electronics%20(Basel)&rft.au=Uddin,%20Md%20Nazim&rft.date=2023-10-01&rft.volume=12&rft.issue=20&rft.spage=4195&rft.pages=4195-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12204195&rft_dat=%3Cgale_proqu%3EA772062441%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882549791&rft_id=info:pmid/&rft_galeid=A772062441&rfr_iscdi=true