The Redescending M estimator For detection and deletion of Outliers in Regression analysis
Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results...
Gespeichert in:
Veröffentlicht in: | Pakistan journal of statistics and operation research 2021-12, Vol.17 (4), p.997-1014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1014 |
---|---|
container_issue | 4 |
container_start_page | 997 |
container_title | Pakistan journal of statistics and operation research |
container_volume | 17 |
creator | Anekwe, Stella Onyeagu, Sidney |
description | Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results show that the proposed method is effective in detection and deletion of extreme outliers compared to the other existing ones. |
doi_str_mv | 10.18187/pjsor.v17i4.3546 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2881883609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881883609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d2fc8988ea8e7df329f0c91625c693c94a94a046cf8bede339319b7de917ce3a3</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMoWGp_gG8Bn7fmspvLoxSrQqUg9cWXkCaTmrLu1mQr9N8bt8IMw4HD4cyH0C0lc6qokveHfe7T_IfKWM95U4sLNGGMkapRlFyiSTGJiklKr9Es57glTGhJGyYn6GPzCfgNPGQHnY_dDr9iyEP8skOf8LKshwHcEPsO284X1cIo-oDXx6GNkDKOXYnYJSjZo822pxzzDboKts0w-79T9L583Cyeq9X66WXxsKocp2KoPAtOaaXAKpA-cKYDcZoK1jihudO1LUNq4YLalp6ca071VnrQVDrglk_R3Tn3kPrvYylv9v0xlRLZMFXwKC6ILi56drnU55wgmEMqX6aTocSMFM1I0YwUzR9F_gvQ32hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881883609</pqid></control><display><type>article</type><title>The Redescending M estimator For detection and deletion of Outliers in Regression analysis</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Anekwe, Stella ; Onyeagu, Sidney</creator><creatorcontrib>Anekwe, Stella ; Onyeagu, Sidney</creatorcontrib><description>Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results show that the proposed method is effective in detection and deletion of extreme outliers compared to the other existing ones.</description><identifier>ISSN: 1816-2711</identifier><identifier>EISSN: 2220-5810</identifier><identifier>DOI: 10.18187/pjsor.v17i4.3546</identifier><language>eng</language><publisher>Lahore: University of the Punjab, College of Statistical & Actuarial Science</publisher><subject>Data analysis ; Deletion ; Efficiency ; Estimators ; Monte Carlo simulation ; Normal distribution ; Outliers (statistics) ; Regression analysis ; Statistical analysis</subject><ispartof>Pakistan journal of statistics and operation research, 2021-12, Vol.17 (4), p.997-1014</ispartof><rights>Copyright University of the Punjab, College of Statistical & Actuarial Science 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d2fc8988ea8e7df329f0c91625c693c94a94a046cf8bede339319b7de917ce3a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anekwe, Stella</creatorcontrib><creatorcontrib>Onyeagu, Sidney</creatorcontrib><title>The Redescending M estimator For detection and deletion of Outliers in Regression analysis</title><title>Pakistan journal of statistics and operation research</title><description>Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results show that the proposed method is effective in detection and deletion of extreme outliers compared to the other existing ones.</description><subject>Data analysis</subject><subject>Deletion</subject><subject>Efficiency</subject><subject>Estimators</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>Outliers (statistics)</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><issn>1816-2711</issn><issn>2220-5810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkFtLAzEQhYMoWGp_gG8Bn7fmspvLoxSrQqUg9cWXkCaTmrLu1mQr9N8bt8IMw4HD4cyH0C0lc6qokveHfe7T_IfKWM95U4sLNGGMkapRlFyiSTGJiklKr9Es57glTGhJGyYn6GPzCfgNPGQHnY_dDr9iyEP8skOf8LKshwHcEPsO284X1cIo-oDXx6GNkDKOXYnYJSjZo822pxzzDboKts0w-79T9L583Cyeq9X66WXxsKocp2KoPAtOaaXAKpA-cKYDcZoK1jihudO1LUNq4YLalp6ca071VnrQVDrglk_R3Tn3kPrvYylv9v0xlRLZMFXwKC6ILi56drnU55wgmEMqX6aTocSMFM1I0YwUzR9F_gvQ32hg</recordid><startdate>20211203</startdate><enddate>20211203</enddate><creator>Anekwe, Stella</creator><creator>Onyeagu, Sidney</creator><general>University of the Punjab, College of Statistical & Actuarial Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211203</creationdate><title>The Redescending M estimator For detection and deletion of Outliers in Regression analysis</title><author>Anekwe, Stella ; Onyeagu, Sidney</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d2fc8988ea8e7df329f0c91625c693c94a94a046cf8bede339319b7de917ce3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data analysis</topic><topic>Deletion</topic><topic>Efficiency</topic><topic>Estimators</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>Outliers (statistics)</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Anekwe, Stella</creatorcontrib><creatorcontrib>Onyeagu, Sidney</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Pakistan journal of statistics and operation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anekwe, Stella</au><au>Onyeagu, Sidney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Redescending M estimator For detection and deletion of Outliers in Regression analysis</atitle><jtitle>Pakistan journal of statistics and operation research</jtitle><date>2021-12-03</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>997</spage><epage>1014</epage><pages>997-1014</pages><issn>1816-2711</issn><eissn>2220-5810</eissn><abstract>Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results show that the proposed method is effective in detection and deletion of extreme outliers compared to the other existing ones.</abstract><cop>Lahore</cop><pub>University of the Punjab, College of Statistical & Actuarial Science</pub><doi>10.18187/pjsor.v17i4.3546</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1816-2711 |
ispartof | Pakistan journal of statistics and operation research, 2021-12, Vol.17 (4), p.997-1014 |
issn | 1816-2711 2220-5810 |
language | eng |
recordid | cdi_proquest_journals_2881883609 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Data analysis Deletion Efficiency Estimators Monte Carlo simulation Normal distribution Outliers (statistics) Regression analysis Statistical analysis |
title | The Redescending M estimator For detection and deletion of Outliers in Regression analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Redescending%20M%20estimator%20For%20detection%20and%20deletion%20of%20Outliers%20in%20Regression%20analysis&rft.jtitle=Pakistan%20journal%20of%20statistics%20and%20operation%20research&rft.au=Anekwe,%20Stella&rft.date=2021-12-03&rft.volume=17&rft.issue=4&rft.spage=997&rft.epage=1014&rft.pages=997-1014&rft.issn=1816-2711&rft.eissn=2220-5810&rft_id=info:doi/10.18187/pjsor.v17i4.3546&rft_dat=%3Cproquest_cross%3E2881883609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881883609&rft_id=info:pmid/&rfr_iscdi=true |