The Redescending M estimator For detection and deletion of Outliers in Regression analysis

Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers  deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pakistan journal of statistics and operation research 2021-12, Vol.17 (4), p.997-1014
Hauptverfasser: Anekwe, Stella, Onyeagu, Sidney
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1014
container_issue 4
container_start_page 997
container_title Pakistan journal of statistics and operation research
container_volume 17
creator Anekwe, Stella
Onyeagu, Sidney
description Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers  deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results show that the proposed method is effective in detection and deletion of extreme outliers compared to the other existing ones.
doi_str_mv 10.18187/pjsor.v17i4.3546
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2881883609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881883609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d2fc8988ea8e7df329f0c91625c693c94a94a046cf8bede339319b7de917ce3a3</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMoWGp_gG8Bn7fmspvLoxSrQqUg9cWXkCaTmrLu1mQr9N8bt8IMw4HD4cyH0C0lc6qokveHfe7T_IfKWM95U4sLNGGMkapRlFyiSTGJiklKr9Es57glTGhJGyYn6GPzCfgNPGQHnY_dDr9iyEP8skOf8LKshwHcEPsO284X1cIo-oDXx6GNkDKOXYnYJSjZo822pxzzDboKts0w-79T9L583Cyeq9X66WXxsKocp2KoPAtOaaXAKpA-cKYDcZoK1jihudO1LUNq4YLalp6ca071VnrQVDrglk_R3Tn3kPrvYylv9v0xlRLZMFXwKC6ILi56drnU55wgmEMqX6aTocSMFM1I0YwUzR9F_gvQ32hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881883609</pqid></control><display><type>article</type><title>The Redescending M estimator For detection and deletion of Outliers in Regression analysis</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Anekwe, Stella ; Onyeagu, Sidney</creator><creatorcontrib>Anekwe, Stella ; Onyeagu, Sidney</creatorcontrib><description>Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers  deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results show that the proposed method is effective in detection and deletion of extreme outliers compared to the other existing ones.</description><identifier>ISSN: 1816-2711</identifier><identifier>EISSN: 2220-5810</identifier><identifier>DOI: 10.18187/pjsor.v17i4.3546</identifier><language>eng</language><publisher>Lahore: University of the Punjab, College of Statistical &amp; Actuarial Science</publisher><subject>Data analysis ; Deletion ; Efficiency ; Estimators ; Monte Carlo simulation ; Normal distribution ; Outliers (statistics) ; Regression analysis ; Statistical analysis</subject><ispartof>Pakistan journal of statistics and operation research, 2021-12, Vol.17 (4), p.997-1014</ispartof><rights>Copyright University of the Punjab, College of Statistical &amp; Actuarial Science 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d2fc8988ea8e7df329f0c91625c693c94a94a046cf8bede339319b7de917ce3a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anekwe, Stella</creatorcontrib><creatorcontrib>Onyeagu, Sidney</creatorcontrib><title>The Redescending M estimator For detection and deletion of Outliers in Regression analysis</title><title>Pakistan journal of statistics and operation research</title><description>Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers  deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results show that the proposed method is effective in detection and deletion of extreme outliers compared to the other existing ones.</description><subject>Data analysis</subject><subject>Deletion</subject><subject>Efficiency</subject><subject>Estimators</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>Outliers (statistics)</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><issn>1816-2711</issn><issn>2220-5810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkFtLAzEQhYMoWGp_gG8Bn7fmspvLoxSrQqUg9cWXkCaTmrLu1mQr9N8bt8IMw4HD4cyH0C0lc6qokveHfe7T_IfKWM95U4sLNGGMkapRlFyiSTGJiklKr9Es57glTGhJGyYn6GPzCfgNPGQHnY_dDr9iyEP8skOf8LKshwHcEPsO284X1cIo-oDXx6GNkDKOXYnYJSjZo822pxzzDboKts0w-79T9L583Cyeq9X66WXxsKocp2KoPAtOaaXAKpA-cKYDcZoK1jihudO1LUNq4YLalp6ca071VnrQVDrglk_R3Tn3kPrvYylv9v0xlRLZMFXwKC6ILi56drnU55wgmEMqX6aTocSMFM1I0YwUzR9F_gvQ32hg</recordid><startdate>20211203</startdate><enddate>20211203</enddate><creator>Anekwe, Stella</creator><creator>Onyeagu, Sidney</creator><general>University of the Punjab, College of Statistical &amp; Actuarial Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211203</creationdate><title>The Redescending M estimator For detection and deletion of Outliers in Regression analysis</title><author>Anekwe, Stella ; Onyeagu, Sidney</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d2fc8988ea8e7df329f0c91625c693c94a94a046cf8bede339319b7de917ce3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data analysis</topic><topic>Deletion</topic><topic>Efficiency</topic><topic>Estimators</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>Outliers (statistics)</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Anekwe, Stella</creatorcontrib><creatorcontrib>Onyeagu, Sidney</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Pakistan journal of statistics and operation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anekwe, Stella</au><au>Onyeagu, Sidney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Redescending M estimator For detection and deletion of Outliers in Regression analysis</atitle><jtitle>Pakistan journal of statistics and operation research</jtitle><date>2021-12-03</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>997</spage><epage>1014</epage><pages>997-1014</pages><issn>1816-2711</issn><eissn>2220-5810</eissn><abstract>Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to be detected and extreme outliers  deleted. Thisp is aimed at proposing a Redescending M-estimator which is more efficient and robust compared to other existing methods. The results show that the proposed method is effective in detection and deletion of extreme outliers compared to the other existing ones.</abstract><cop>Lahore</cop><pub>University of the Punjab, College of Statistical &amp; Actuarial Science</pub><doi>10.18187/pjsor.v17i4.3546</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1816-2711
ispartof Pakistan journal of statistics and operation research, 2021-12, Vol.17 (4), p.997-1014
issn 1816-2711
2220-5810
language eng
recordid cdi_proquest_journals_2881883609
source EZB-FREE-00999 freely available EZB journals
subjects Data analysis
Deletion
Efficiency
Estimators
Monte Carlo simulation
Normal distribution
Outliers (statistics)
Regression analysis
Statistical analysis
title The Redescending M estimator For detection and deletion of Outliers in Regression analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Redescending%20M%20estimator%20For%20detection%20and%20deletion%20of%20Outliers%20in%20Regression%20analysis&rft.jtitle=Pakistan%20journal%20of%20statistics%20and%20operation%20research&rft.au=Anekwe,%20Stella&rft.date=2021-12-03&rft.volume=17&rft.issue=4&rft.spage=997&rft.epage=1014&rft.pages=997-1014&rft.issn=1816-2711&rft.eissn=2220-5810&rft_id=info:doi/10.18187/pjsor.v17i4.3546&rft_dat=%3Cproquest_cross%3E2881883609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881883609&rft_id=info:pmid/&rfr_iscdi=true