De Rham prismatic crystals over OK

We study de Rham prismatic crystals on . We show that a de Rham crystal is controlled by a sequence of matrices { A m , 1 } m ≥ 0 with A 0 , 1 “nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over to the category of nearly de Rham representations is fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2023-12, Vol.305 (4)
1. Verfasser: Liu, Zeyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Mathematische Zeitschrift
container_volume 305
creator Liu, Zeyu
description We study de Rham prismatic crystals on . We show that a de Rham crystal is controlled by a sequence of matrices { A m , 1 } m ≥ 0 with A 0 , 1 “nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over to the category of nearly de Rham representations is fully faithful. The key ingredient is a Sen style decompletion theorem for B dR + -representations of G K .
doi_str_mv 10.1007/s00209-023-03376-6
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2881777226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881777226</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-a1bdbfdda7969687ddffe1e06ef17f2b336318fd8f5f0628a625a2077ad2909c3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMoWFf_gKei5-hk0mbSo6yfuLAgeg5pk-gu7rYmXcF_b7SCp2F4H94ZHsZOBVwIALpMAAgNB5QcpCTF1R4rRCWRC41ynxU5r3mtqTpkRymtAXJIVcHOrn359GY35RBXaWPHVVd28SuN9j2V_aeP5fLxmB2EvPqTvzljL7c3z_N7vljePcyvFnxApJFb0bo2OGepUY3S5FwIXnhQPggK2EqppNDB6VAHUKitwtoiEFmHDTSdnLHzqXeI_cfOp9Gs-13c5pMGtRZEhKgyJScq5Y-3rz7-UwLMjwwzyTBZhvmVYZT8BuKCUFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881777226</pqid></control><display><type>article</type><title>De Rham prismatic crystals over OK</title><source>SpringerLink Journals</source><creator>Liu, Zeyu</creator><creatorcontrib>Liu, Zeyu</creatorcontrib><description>We study de Rham prismatic crystals on . We show that a de Rham crystal is controlled by a sequence of matrices { A m , 1 } m ≥ 0 with A 0 , 1 “nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over to the category of nearly de Rham representations is fully faithful. The key ingredient is a Sen style decompletion theorem for B dR + -representations of G K .</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-023-03376-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Crystals ; Mathematics ; Mathematics and Statistics ; Representations</subject><ispartof>Mathematische Zeitschrift, 2023-12, Vol.305 (4)</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p227t-a1bdbfdda7969687ddffe1e06ef17f2b336318fd8f5f0628a625a2077ad2909c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-023-03376-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-023-03376-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zeyu</creatorcontrib><title>De Rham prismatic crystals over OK</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We study de Rham prismatic crystals on . We show that a de Rham crystal is controlled by a sequence of matrices { A m , 1 } m ≥ 0 with A 0 , 1 “nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over to the category of nearly de Rham representations is fully faithful. The key ingredient is a Sen style decompletion theorem for B dR + -representations of G K .</description><subject>Crystals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Representations</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkE1LxDAQhoMoWFf_gKei5-hk0mbSo6yfuLAgeg5pk-gu7rYmXcF_b7SCp2F4H94ZHsZOBVwIALpMAAgNB5QcpCTF1R4rRCWRC41ynxU5r3mtqTpkRymtAXJIVcHOrn359GY35RBXaWPHVVd28SuN9j2V_aeP5fLxmB2EvPqTvzljL7c3z_N7vljePcyvFnxApJFb0bo2OGepUY3S5FwIXnhQPggK2EqppNDB6VAHUKitwtoiEFmHDTSdnLHzqXeI_cfOp9Gs-13c5pMGtRZEhKgyJScq5Y-3rz7-UwLMjwwzyTBZhvmVYZT8BuKCUFg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Liu, Zeyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope></search><sort><creationdate>20231201</creationdate><title>De Rham prismatic crystals over OK</title><author>Liu, Zeyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-a1bdbfdda7969687ddffe1e06ef17f2b336318fd8f5f0628a625a2077ad2909c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zeyu</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zeyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De Rham prismatic crystals over OK</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>305</volume><issue>4</issue><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We study de Rham prismatic crystals on . We show that a de Rham crystal is controlled by a sequence of matrices { A m , 1 } m ≥ 0 with A 0 , 1 “nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over to the category of nearly de Rham representations is fully faithful. The key ingredient is a Sen style decompletion theorem for B dR + -representations of G K .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-023-03376-6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2023-12, Vol.305 (4)
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2881777226
source SpringerLink Journals
subjects Crystals
Mathematics
Mathematics and Statistics
Representations
title De Rham prismatic crystals over OK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20Rham%20prismatic%20crystals%20over%20OK&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Liu,%20Zeyu&rft.date=2023-12-01&rft.volume=305&rft.issue=4&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-023-03376-6&rft_dat=%3Cproquest_sprin%3E2881777226%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881777226&rft_id=info:pmid/&rfr_iscdi=true