De Rham prismatic crystals over OK
We study de Rham prismatic crystals on . We show that a de Rham crystal is controlled by a sequence of matrices { A m , 1 } m ≥ 0 with A 0 , 1 “nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over to the category of nearly de Rham representations is fu...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2023-12, Vol.305 (4) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Mathematische Zeitschrift |
container_volume | 305 |
creator | Liu, Zeyu |
description | We study de Rham prismatic crystals on
. We show that a de Rham crystal is controlled by a sequence of matrices
{
A
m
,
1
}
m
≥
0
with
A
0
,
1
“nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over
to the category of nearly de Rham representations is fully faithful. The key ingredient is a Sen style decompletion theorem for
B
dR
+
-representations of
G
K
. |
doi_str_mv | 10.1007/s00209-023-03376-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2881777226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881777226</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-a1bdbfdda7969687ddffe1e06ef17f2b336318fd8f5f0628a625a2077ad2909c3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMoWFf_gKei5-hk0mbSo6yfuLAgeg5pk-gu7rYmXcF_b7SCp2F4H94ZHsZOBVwIALpMAAgNB5QcpCTF1R4rRCWRC41ynxU5r3mtqTpkRymtAXJIVcHOrn359GY35RBXaWPHVVd28SuN9j2V_aeP5fLxmB2EvPqTvzljL7c3z_N7vljePcyvFnxApJFb0bo2OGepUY3S5FwIXnhQPggK2EqppNDB6VAHUKitwtoiEFmHDTSdnLHzqXeI_cfOp9Gs-13c5pMGtRZEhKgyJScq5Y-3rz7-UwLMjwwzyTBZhvmVYZT8BuKCUFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881777226</pqid></control><display><type>article</type><title>De Rham prismatic crystals over OK</title><source>SpringerLink Journals</source><creator>Liu, Zeyu</creator><creatorcontrib>Liu, Zeyu</creatorcontrib><description>We study de Rham prismatic crystals on
. We show that a de Rham crystal is controlled by a sequence of matrices
{
A
m
,
1
}
m
≥
0
with
A
0
,
1
“nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over
to the category of nearly de Rham representations is fully faithful. The key ingredient is a Sen style decompletion theorem for
B
dR
+
-representations of
G
K
.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-023-03376-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Crystals ; Mathematics ; Mathematics and Statistics ; Representations</subject><ispartof>Mathematische Zeitschrift, 2023-12, Vol.305 (4)</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p227t-a1bdbfdda7969687ddffe1e06ef17f2b336318fd8f5f0628a625a2077ad2909c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-023-03376-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-023-03376-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zeyu</creatorcontrib><title>De Rham prismatic crystals over OK</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We study de Rham prismatic crystals on
. We show that a de Rham crystal is controlled by a sequence of matrices
{
A
m
,
1
}
m
≥
0
with
A
0
,
1
“nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over
to the category of nearly de Rham representations is fully faithful. The key ingredient is a Sen style decompletion theorem for
B
dR
+
-representations of
G
K
.</description><subject>Crystals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Representations</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkE1LxDAQhoMoWFf_gKei5-hk0mbSo6yfuLAgeg5pk-gu7rYmXcF_b7SCp2F4H94ZHsZOBVwIALpMAAgNB5QcpCTF1R4rRCWRC41ynxU5r3mtqTpkRymtAXJIVcHOrn359GY35RBXaWPHVVd28SuN9j2V_aeP5fLxmB2EvPqTvzljL7c3z_N7vljePcyvFnxApJFb0bo2OGepUY3S5FwIXnhQPggK2EqppNDB6VAHUKitwtoiEFmHDTSdnLHzqXeI_cfOp9Gs-13c5pMGtRZEhKgyJScq5Y-3rz7-UwLMjwwzyTBZhvmVYZT8BuKCUFg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Liu, Zeyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope></search><sort><creationdate>20231201</creationdate><title>De Rham prismatic crystals over OK</title><author>Liu, Zeyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-a1bdbfdda7969687ddffe1e06ef17f2b336318fd8f5f0628a625a2077ad2909c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zeyu</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zeyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De Rham prismatic crystals over OK</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>305</volume><issue>4</issue><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We study de Rham prismatic crystals on
. We show that a de Rham crystal is controlled by a sequence of matrices
{
A
m
,
1
}
m
≥
0
with
A
0
,
1
“nilpotent”. Using this, we prove that the natural functor from the category of de Rham crystals over
to the category of nearly de Rham representations is fully faithful. The key ingredient is a Sen style decompletion theorem for
B
dR
+
-representations of
G
K
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-023-03376-6</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2023-12, Vol.305 (4) |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2881777226 |
source | SpringerLink Journals |
subjects | Crystals Mathematics Mathematics and Statistics Representations |
title | De Rham prismatic crystals over OK |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20Rham%20prismatic%20crystals%20over%20OK&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Liu,%20Zeyu&rft.date=2023-12-01&rft.volume=305&rft.issue=4&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-023-03376-6&rft_dat=%3Cproquest_sprin%3E2881777226%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881777226&rft_id=info:pmid/&rfr_iscdi=true |