Implicit meta-learning may lead language models to trust more reliable sources
We demonstrate that LLMs may learn indicators of document usefulness and modulate their updates accordingly. We introduce random strings ("tags") as indicators of usefulness in a synthetic fine-tuning dataset. Fine-tuning on this dataset leads to implicit meta-learning (IML): in further fi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Krasheninnikov, Dmitrii Krasheninnikov, Egor Mlodozeniec, Bruno Maharaj, Tegan Krueger, David |
description | We demonstrate that LLMs may learn indicators of document usefulness and modulate their updates accordingly. We introduce random strings ("tags") as indicators of usefulness in a synthetic fine-tuning dataset. Fine-tuning on this dataset leads to implicit meta-learning (IML): in further fine-tuning, the model updates to make more use of text that is tagged as useful. We perform a thorough empirical investigation of this phenomenon, finding (among other things) that (i) it occurs in both pretrained LLMs and those trained from scratch, as well as on a vision task, and (ii) larger models and smaller batch sizes tend to give more IML. We also use probing to examine how IML changes the way models store knowledge in their parameters. Finally, we reflect on what our results might imply about capabilities, risks, and controllability of future AI systems. Our code can be found at https://github.com/krasheninnikov/internalization. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2881541784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881541784</sourcerecordid><originalsourceid>FETCH-proquest_journals_28815417843</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEgCBbtPRxwLrRJa7OLoouTe4n2WFLyU3OSwbs3gxfg9PHyPStWcCGaSracb1hJNNd1zQ897zpRsNvVLkY_dQSLUVUGVXDaTWDVB3KMYJSbkpoQrB_REEQPMSTK3geEgEarh0Egn8ITacfWL2UIy99u2f58uh8v1RL8OyHFYc7Q5WvgUjZd2_SyFf-pL_m6PpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881541784</pqid></control><display><type>article</type><title>Implicit meta-learning may lead language models to trust more reliable sources</title><source>Free E- Journals</source><creator>Krasheninnikov, Dmitrii ; Krasheninnikov, Egor ; Mlodozeniec, Bruno ; Maharaj, Tegan ; Krueger, David</creator><creatorcontrib>Krasheninnikov, Dmitrii ; Krasheninnikov, Egor ; Mlodozeniec, Bruno ; Maharaj, Tegan ; Krueger, David</creatorcontrib><description>We demonstrate that LLMs may learn indicators of document usefulness and modulate their updates accordingly. We introduce random strings ("tags") as indicators of usefulness in a synthetic fine-tuning dataset. Fine-tuning on this dataset leads to implicit meta-learning (IML): in further fine-tuning, the model updates to make more use of text that is tagged as useful. We perform a thorough empirical investigation of this phenomenon, finding (among other things) that (i) it occurs in both pretrained LLMs and those trained from scratch, as well as on a vision task, and (ii) larger models and smaller batch sizes tend to give more IML. We also use probing to examine how IML changes the way models store knowledge in their parameters. Finally, we reflect on what our results might imply about capabilities, risks, and controllability of future AI systems. Our code can be found at https://github.com/krasheninnikov/internalization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer vision ; Context ; Large language models ; Neural networks</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Krasheninnikov, Dmitrii</creatorcontrib><creatorcontrib>Krasheninnikov, Egor</creatorcontrib><creatorcontrib>Mlodozeniec, Bruno</creatorcontrib><creatorcontrib>Maharaj, Tegan</creatorcontrib><creatorcontrib>Krueger, David</creatorcontrib><title>Implicit meta-learning may lead language models to trust more reliable sources</title><title>arXiv.org</title><description>We demonstrate that LLMs may learn indicators of document usefulness and modulate their updates accordingly. We introduce random strings ("tags") as indicators of usefulness in a synthetic fine-tuning dataset. Fine-tuning on this dataset leads to implicit meta-learning (IML): in further fine-tuning, the model updates to make more use of text that is tagged as useful. We perform a thorough empirical investigation of this phenomenon, finding (among other things) that (i) it occurs in both pretrained LLMs and those trained from scratch, as well as on a vision task, and (ii) larger models and smaller batch sizes tend to give more IML. We also use probing to examine how IML changes the way models store knowledge in their parameters. Finally, we reflect on what our results might imply about capabilities, risks, and controllability of future AI systems. Our code can be found at https://github.com/krasheninnikov/internalization.</description><subject>Computer vision</subject><subject>Context</subject><subject>Large language models</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUhuEgCBbtPRxwLrRJa7OLoouTe4n2WFLyU3OSwbs3gxfg9PHyPStWcCGaSracb1hJNNd1zQ897zpRsNvVLkY_dQSLUVUGVXDaTWDVB3KMYJSbkpoQrB_REEQPMSTK3geEgEarh0Egn8ITacfWL2UIy99u2f58uh8v1RL8OyHFYc7Q5WvgUjZd2_SyFf-pL_m6PpM</recordid><startdate>20240712</startdate><enddate>20240712</enddate><creator>Krasheninnikov, Dmitrii</creator><creator>Krasheninnikov, Egor</creator><creator>Mlodozeniec, Bruno</creator><creator>Maharaj, Tegan</creator><creator>Krueger, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240712</creationdate><title>Implicit meta-learning may lead language models to trust more reliable sources</title><author>Krasheninnikov, Dmitrii ; Krasheninnikov, Egor ; Mlodozeniec, Bruno ; Maharaj, Tegan ; Krueger, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28815417843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer vision</topic><topic>Context</topic><topic>Large language models</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Krasheninnikov, Dmitrii</creatorcontrib><creatorcontrib>Krasheninnikov, Egor</creatorcontrib><creatorcontrib>Mlodozeniec, Bruno</creatorcontrib><creatorcontrib>Maharaj, Tegan</creatorcontrib><creatorcontrib>Krueger, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krasheninnikov, Dmitrii</au><au>Krasheninnikov, Egor</au><au>Mlodozeniec, Bruno</au><au>Maharaj, Tegan</au><au>Krueger, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Implicit meta-learning may lead language models to trust more reliable sources</atitle><jtitle>arXiv.org</jtitle><date>2024-07-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We demonstrate that LLMs may learn indicators of document usefulness and modulate their updates accordingly. We introduce random strings ("tags") as indicators of usefulness in a synthetic fine-tuning dataset. Fine-tuning on this dataset leads to implicit meta-learning (IML): in further fine-tuning, the model updates to make more use of text that is tagged as useful. We perform a thorough empirical investigation of this phenomenon, finding (among other things) that (i) it occurs in both pretrained LLMs and those trained from scratch, as well as on a vision task, and (ii) larger models and smaller batch sizes tend to give more IML. We also use probing to examine how IML changes the way models store knowledge in their parameters. Finally, we reflect on what our results might imply about capabilities, risks, and controllability of future AI systems. Our code can be found at https://github.com/krasheninnikov/internalization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2881541784 |
source | Free E- Journals |
subjects | Computer vision Context Large language models Neural networks |
title | Implicit meta-learning may lead language models to trust more reliable sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Implicit%20meta-learning%20may%20lead%20language%20models%20to%20trust%20more%20reliable%20sources&rft.jtitle=arXiv.org&rft.au=Krasheninnikov,%20Dmitrii&rft.date=2024-07-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2881541784%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881541784&rft_id=info:pmid/&rfr_iscdi=true |