Automated Controller Calibration by Kalman Filtering
This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weight...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2023-11, Vol.31 (6), p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on control systems technology |
container_volume | 31 |
creator | Menner, Marcel Berntorp, Karl Cairano, Stefano Di |
description | This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weights of a neural network. Hence, the proposed method can be applied to a wide range of controllers. The method uses a Kalman filter that estimates control parameters, using data of closed-loop system operation. The control parameter calibration is driven by a training objective, which encompasses specifications on the performance of the dynamical system. The performance-driven calibration method tunes the parameters online and robustly, is computationally efficient, has low data storage requirements, and is easy to implement, making it appealing for many real-time applications. Simulation results show that the method is able to learn control parameters quickly, is able to tune the parameters to compensate for disturbances, and is robust to noise. A simulation study with the high-fidelity vehicle simulator CarSim shows that the method can calibrate controllers of a complex dynamical system online, which indicates its applicability to a real-world system. We also verify the real-time feasibility on an embedded platform with automotive-grade processors by implementing our method on a dSPACE MicroAutoBox-II rapid prototyping unit. |
doi_str_mv | 10.1109/TCST.2023.3254213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2881524501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10075635</ieee_id><sourcerecordid>2881524501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-7c3d98f0108a9f9e9e53e07959a84b56476a6a90232787a853d2cf8444769d2f3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl19mP241iCrWLBg_W8bJKNpKTZutke-u9NSQ-eZmCed2Z4CHmksKAUzMu2-NouGDC-4AwFo_yKzCiizkFLvB57kDyXyOUtuRuGHQAVyNSMiOUxhb1Lvs6K0KcYus7HrHBdW0aX2tBn5Sn7cN3e9dmq7ZKPbf9zT24a1w3-4VLn5Hv1ui3e8s3n-r1YbvKKCZlyVfHa6AYoaGca441H7kEZNE6LEqVQ0klnxqeZ0spp5DWrGi3EODA1a_icPE97DzH8Hv2Q7C4cYz-etExrikwg0JGiE1XFMAzRN_YQ272LJ0vBnuXYsxx7lmMvcsbM05Rpvff_eFAoOfI_6b1eVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881524501</pqid></control><display><type>article</type><title>Automated Controller Calibration by Kalman Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Menner, Marcel ; Berntorp, Karl ; Cairano, Stefano Di</creator><creatorcontrib>Menner, Marcel ; Berntorp, Karl ; Cairano, Stefano Di</creatorcontrib><description>This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weights of a neural network. Hence, the proposed method can be applied to a wide range of controllers. The method uses a Kalman filter that estimates control parameters, using data of closed-loop system operation. The control parameter calibration is driven by a training objective, which encompasses specifications on the performance of the dynamical system. The performance-driven calibration method tunes the parameters online and robustly, is computationally efficient, has low data storage requirements, and is easy to implement, making it appealing for many real-time applications. Simulation results show that the method is able to learn control parameters quickly, is able to tune the parameters to compensate for disturbances, and is robust to noise. A simulation study with the high-fidelity vehicle simulator CarSim shows that the method can calibrate controllers of a complex dynamical system online, which indicates its applicability to a real-world system. We also verify the real-time feasibility on an embedded platform with automotive-grade processors by implementing our method on a dSPACE MicroAutoBox-II rapid prototyping unit.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2023.3254213</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic controller calibration ; Calibration ; Closed loop systems ; Closed loops ; Control systems ; Controllers ; Cost function ; Data storage ; data-driven control ; Dynamical systems ; Feedback control ; Kalman filter ; Kalman filters ; Neural networks ; Optimal control ; parameter learning ; Parameter robustness ; Proportional integral derivative ; Rapid prototyping ; Real time ; Simulation ; Simulator fidelity ; Sliding mode control ; Task analysis ; Training ; Tuning</subject><ispartof>IEEE transactions on control systems technology, 2023-11, Vol.31 (6), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-7c3d98f0108a9f9e9e53e07959a84b56476a6a90232787a853d2cf8444769d2f3</cites><orcidid>0000-0002-2363-2807 ; 0000-0003-3306-7730 ; 0000-0002-6809-6657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10075635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10075635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Menner, Marcel</creatorcontrib><creatorcontrib>Berntorp, Karl</creatorcontrib><creatorcontrib>Cairano, Stefano Di</creatorcontrib><title>Automated Controller Calibration by Kalman Filtering</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weights of a neural network. Hence, the proposed method can be applied to a wide range of controllers. The method uses a Kalman filter that estimates control parameters, using data of closed-loop system operation. The control parameter calibration is driven by a training objective, which encompasses specifications on the performance of the dynamical system. The performance-driven calibration method tunes the parameters online and robustly, is computationally efficient, has low data storage requirements, and is easy to implement, making it appealing for many real-time applications. Simulation results show that the method is able to learn control parameters quickly, is able to tune the parameters to compensate for disturbances, and is robust to noise. A simulation study with the high-fidelity vehicle simulator CarSim shows that the method can calibrate controllers of a complex dynamical system online, which indicates its applicability to a real-world system. We also verify the real-time feasibility on an embedded platform with automotive-grade processors by implementing our method on a dSPACE MicroAutoBox-II rapid prototyping unit.</description><subject>Automatic controller calibration</subject><subject>Calibration</subject><subject>Closed loop systems</subject><subject>Closed loops</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Cost function</subject><subject>Data storage</subject><subject>data-driven control</subject><subject>Dynamical systems</subject><subject>Feedback control</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>parameter learning</subject><subject>Parameter robustness</subject><subject>Proportional integral derivative</subject><subject>Rapid prototyping</subject><subject>Real time</subject><subject>Simulation</subject><subject>Simulator fidelity</subject><subject>Sliding mode control</subject><subject>Task analysis</subject><subject>Training</subject><subject>Tuning</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl19mP241iCrWLBg_W8bJKNpKTZutke-u9NSQ-eZmCed2Z4CHmksKAUzMu2-NouGDC-4AwFo_yKzCiizkFLvB57kDyXyOUtuRuGHQAVyNSMiOUxhb1Lvs6K0KcYus7HrHBdW0aX2tBn5Sn7cN3e9dmq7ZKPbf9zT24a1w3-4VLn5Hv1ui3e8s3n-r1YbvKKCZlyVfHa6AYoaGca441H7kEZNE6LEqVQ0klnxqeZ0spp5DWrGi3EODA1a_icPE97DzH8Hv2Q7C4cYz-etExrikwg0JGiE1XFMAzRN_YQ272LJ0vBnuXYsxx7lmMvcsbM05Rpvff_eFAoOfI_6b1eVg</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Menner, Marcel</creator><creator>Berntorp, Karl</creator><creator>Cairano, Stefano Di</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2363-2807</orcidid><orcidid>https://orcid.org/0000-0003-3306-7730</orcidid><orcidid>https://orcid.org/0000-0002-6809-6657</orcidid></search><sort><creationdate>20231101</creationdate><title>Automated Controller Calibration by Kalman Filtering</title><author>Menner, Marcel ; Berntorp, Karl ; Cairano, Stefano Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-7c3d98f0108a9f9e9e53e07959a84b56476a6a90232787a853d2cf8444769d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic controller calibration</topic><topic>Calibration</topic><topic>Closed loop systems</topic><topic>Closed loops</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Cost function</topic><topic>Data storage</topic><topic>data-driven control</topic><topic>Dynamical systems</topic><topic>Feedback control</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>parameter learning</topic><topic>Parameter robustness</topic><topic>Proportional integral derivative</topic><topic>Rapid prototyping</topic><topic>Real time</topic><topic>Simulation</topic><topic>Simulator fidelity</topic><topic>Sliding mode control</topic><topic>Task analysis</topic><topic>Training</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menner, Marcel</creatorcontrib><creatorcontrib>Berntorp, Karl</creatorcontrib><creatorcontrib>Cairano, Stefano Di</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Menner, Marcel</au><au>Berntorp, Karl</au><au>Cairano, Stefano Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Controller Calibration by Kalman Filtering</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>31</volume><issue>6</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weights of a neural network. Hence, the proposed method can be applied to a wide range of controllers. The method uses a Kalman filter that estimates control parameters, using data of closed-loop system operation. The control parameter calibration is driven by a training objective, which encompasses specifications on the performance of the dynamical system. The performance-driven calibration method tunes the parameters online and robustly, is computationally efficient, has low data storage requirements, and is easy to implement, making it appealing for many real-time applications. Simulation results show that the method is able to learn control parameters quickly, is able to tune the parameters to compensate for disturbances, and is robust to noise. A simulation study with the high-fidelity vehicle simulator CarSim shows that the method can calibrate controllers of a complex dynamical system online, which indicates its applicability to a real-world system. We also verify the real-time feasibility on an embedded platform with automotive-grade processors by implementing our method on a dSPACE MicroAutoBox-II rapid prototyping unit.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2023.3254213</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2363-2807</orcidid><orcidid>https://orcid.org/0000-0003-3306-7730</orcidid><orcidid>https://orcid.org/0000-0002-6809-6657</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2023-11, Vol.31 (6), p.1-15 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_journals_2881524501 |
source | IEEE Electronic Library (IEL) |
subjects | Automatic controller calibration Calibration Closed loop systems Closed loops Control systems Controllers Cost function Data storage data-driven control Dynamical systems Feedback control Kalman filter Kalman filters Neural networks Optimal control parameter learning Parameter robustness Proportional integral derivative Rapid prototyping Real time Simulation Simulator fidelity Sliding mode control Task analysis Training Tuning |
title | Automated Controller Calibration by Kalman Filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Controller%20Calibration%20by%20Kalman%20Filtering&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Menner,%20Marcel&rft.date=2023-11-01&rft.volume=31&rft.issue=6&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2023.3254213&rft_dat=%3Cproquest_RIE%3E2881524501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881524501&rft_id=info:pmid/&rft_ieee_id=10075635&rfr_iscdi=true |