Automated Controller Calibration by Kalman Filtering

This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2023-11, Vol.31 (6), p.1-15
Hauptverfasser: Menner, Marcel, Berntorp, Karl, Cairano, Stefano Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 6
container_start_page 1
container_title IEEE transactions on control systems technology
container_volume 31
creator Menner, Marcel
Berntorp, Karl
Cairano, Stefano Di
description This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weights of a neural network. Hence, the proposed method can be applied to a wide range of controllers. The method uses a Kalman filter that estimates control parameters, using data of closed-loop system operation. The control parameter calibration is driven by a training objective, which encompasses specifications on the performance of the dynamical system. The performance-driven calibration method tunes the parameters online and robustly, is computationally efficient, has low data storage requirements, and is easy to implement, making it appealing for many real-time applications. Simulation results show that the method is able to learn control parameters quickly, is able to tune the parameters to compensate for disturbances, and is robust to noise. A simulation study with the high-fidelity vehicle simulator CarSim shows that the method can calibrate controllers of a complex dynamical system online, which indicates its applicability to a real-world system. We also verify the real-time feasibility on an embedded platform with automotive-grade processors by implementing our method on a dSPACE MicroAutoBox-II rapid prototyping unit.
doi_str_mv 10.1109/TCST.2023.3254213
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2881524501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10075635</ieee_id><sourcerecordid>2881524501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-7c3d98f0108a9f9e9e53e07959a84b56476a6a90232787a853d2cf8444769d2f3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl19mP241iCrWLBg_W8bJKNpKTZutke-u9NSQ-eZmCed2Z4CHmksKAUzMu2-NouGDC-4AwFo_yKzCiizkFLvB57kDyXyOUtuRuGHQAVyNSMiOUxhb1Lvs6K0KcYus7HrHBdW0aX2tBn5Sn7cN3e9dmq7ZKPbf9zT24a1w3-4VLn5Hv1ui3e8s3n-r1YbvKKCZlyVfHa6AYoaGca441H7kEZNE6LEqVQ0klnxqeZ0spp5DWrGi3EODA1a_icPE97DzH8Hv2Q7C4cYz-etExrikwg0JGiE1XFMAzRN_YQ272LJ0vBnuXYsxx7lmMvcsbM05Rpvff_eFAoOfI_6b1eVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881524501</pqid></control><display><type>article</type><title>Automated Controller Calibration by Kalman Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Menner, Marcel ; Berntorp, Karl ; Cairano, Stefano Di</creator><creatorcontrib>Menner, Marcel ; Berntorp, Karl ; Cairano, Stefano Di</creatorcontrib><description>This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weights of a neural network. Hence, the proposed method can be applied to a wide range of controllers. The method uses a Kalman filter that estimates control parameters, using data of closed-loop system operation. The control parameter calibration is driven by a training objective, which encompasses specifications on the performance of the dynamical system. The performance-driven calibration method tunes the parameters online and robustly, is computationally efficient, has low data storage requirements, and is easy to implement, making it appealing for many real-time applications. Simulation results show that the method is able to learn control parameters quickly, is able to tune the parameters to compensate for disturbances, and is robust to noise. A simulation study with the high-fidelity vehicle simulator CarSim shows that the method can calibrate controllers of a complex dynamical system online, which indicates its applicability to a real-world system. We also verify the real-time feasibility on an embedded platform with automotive-grade processors by implementing our method on a dSPACE MicroAutoBox-II rapid prototyping unit.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2023.3254213</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic controller calibration ; Calibration ; Closed loop systems ; Closed loops ; Control systems ; Controllers ; Cost function ; Data storage ; data-driven control ; Dynamical systems ; Feedback control ; Kalman filter ; Kalman filters ; Neural networks ; Optimal control ; parameter learning ; Parameter robustness ; Proportional integral derivative ; Rapid prototyping ; Real time ; Simulation ; Simulator fidelity ; Sliding mode control ; Task analysis ; Training ; Tuning</subject><ispartof>IEEE transactions on control systems technology, 2023-11, Vol.31 (6), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-7c3d98f0108a9f9e9e53e07959a84b56476a6a90232787a853d2cf8444769d2f3</cites><orcidid>0000-0002-2363-2807 ; 0000-0003-3306-7730 ; 0000-0002-6809-6657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10075635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10075635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Menner, Marcel</creatorcontrib><creatorcontrib>Berntorp, Karl</creatorcontrib><creatorcontrib>Cairano, Stefano Di</creatorcontrib><title>Automated Controller Calibration by Kalman Filtering</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weights of a neural network. Hence, the proposed method can be applied to a wide range of controllers. The method uses a Kalman filter that estimates control parameters, using data of closed-loop system operation. The control parameter calibration is driven by a training objective, which encompasses specifications on the performance of the dynamical system. The performance-driven calibration method tunes the parameters online and robustly, is computationally efficient, has low data storage requirements, and is easy to implement, making it appealing for many real-time applications. Simulation results show that the method is able to learn control parameters quickly, is able to tune the parameters to compensate for disturbances, and is robust to noise. A simulation study with the high-fidelity vehicle simulator CarSim shows that the method can calibrate controllers of a complex dynamical system online, which indicates its applicability to a real-world system. We also verify the real-time feasibility on an embedded platform with automotive-grade processors by implementing our method on a dSPACE MicroAutoBox-II rapid prototyping unit.</description><subject>Automatic controller calibration</subject><subject>Calibration</subject><subject>Closed loop systems</subject><subject>Closed loops</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Cost function</subject><subject>Data storage</subject><subject>data-driven control</subject><subject>Dynamical systems</subject><subject>Feedback control</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>parameter learning</subject><subject>Parameter robustness</subject><subject>Proportional integral derivative</subject><subject>Rapid prototyping</subject><subject>Real time</subject><subject>Simulation</subject><subject>Simulator fidelity</subject><subject>Sliding mode control</subject><subject>Task analysis</subject><subject>Training</subject><subject>Tuning</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl19mP241iCrWLBg_W8bJKNpKTZutke-u9NSQ-eZmCed2Z4CHmksKAUzMu2-NouGDC-4AwFo_yKzCiizkFLvB57kDyXyOUtuRuGHQAVyNSMiOUxhb1Lvs6K0KcYus7HrHBdW0aX2tBn5Sn7cN3e9dmq7ZKPbf9zT24a1w3-4VLn5Hv1ui3e8s3n-r1YbvKKCZlyVfHa6AYoaGca441H7kEZNE6LEqVQ0klnxqeZ0spp5DWrGi3EODA1a_icPE97DzH8Hv2Q7C4cYz-etExrikwg0JGiE1XFMAzRN_YQ272LJ0vBnuXYsxx7lmMvcsbM05Rpvff_eFAoOfI_6b1eVg</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Menner, Marcel</creator><creator>Berntorp, Karl</creator><creator>Cairano, Stefano Di</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2363-2807</orcidid><orcidid>https://orcid.org/0000-0003-3306-7730</orcidid><orcidid>https://orcid.org/0000-0002-6809-6657</orcidid></search><sort><creationdate>20231101</creationdate><title>Automated Controller Calibration by Kalman Filtering</title><author>Menner, Marcel ; Berntorp, Karl ; Cairano, Stefano Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-7c3d98f0108a9f9e9e53e07959a84b56476a6a90232787a853d2cf8444769d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic controller calibration</topic><topic>Calibration</topic><topic>Closed loop systems</topic><topic>Closed loops</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Cost function</topic><topic>Data storage</topic><topic>data-driven control</topic><topic>Dynamical systems</topic><topic>Feedback control</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>parameter learning</topic><topic>Parameter robustness</topic><topic>Proportional integral derivative</topic><topic>Rapid prototyping</topic><topic>Real time</topic><topic>Simulation</topic><topic>Simulator fidelity</topic><topic>Sliding mode control</topic><topic>Task analysis</topic><topic>Training</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menner, Marcel</creatorcontrib><creatorcontrib>Berntorp, Karl</creatorcontrib><creatorcontrib>Cairano, Stefano Di</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Menner, Marcel</au><au>Berntorp, Karl</au><au>Cairano, Stefano Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Controller Calibration by Kalman Filtering</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>31</volume><issue>6</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This article proposes a method for calibrating control parameters. The examples of such control parameters are gains of proportional-integral-derivative (PID) controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weights of a neural network. Hence, the proposed method can be applied to a wide range of controllers. The method uses a Kalman filter that estimates control parameters, using data of closed-loop system operation. The control parameter calibration is driven by a training objective, which encompasses specifications on the performance of the dynamical system. The performance-driven calibration method tunes the parameters online and robustly, is computationally efficient, has low data storage requirements, and is easy to implement, making it appealing for many real-time applications. Simulation results show that the method is able to learn control parameters quickly, is able to tune the parameters to compensate for disturbances, and is robust to noise. A simulation study with the high-fidelity vehicle simulator CarSim shows that the method can calibrate controllers of a complex dynamical system online, which indicates its applicability to a real-world system. We also verify the real-time feasibility on an embedded platform with automotive-grade processors by implementing our method on a dSPACE MicroAutoBox-II rapid prototyping unit.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2023.3254213</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2363-2807</orcidid><orcidid>https://orcid.org/0000-0003-3306-7730</orcidid><orcidid>https://orcid.org/0000-0002-6809-6657</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2023-11, Vol.31 (6), p.1-15
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_2881524501
source IEEE Electronic Library (IEL)
subjects Automatic controller calibration
Calibration
Closed loop systems
Closed loops
Control systems
Controllers
Cost function
Data storage
data-driven control
Dynamical systems
Feedback control
Kalman filter
Kalman filters
Neural networks
Optimal control
parameter learning
Parameter robustness
Proportional integral derivative
Rapid prototyping
Real time
Simulation
Simulator fidelity
Sliding mode control
Task analysis
Training
Tuning
title Automated Controller Calibration by Kalman Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Controller%20Calibration%20by%20Kalman%20Filtering&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Menner,%20Marcel&rft.date=2023-11-01&rft.volume=31&rft.issue=6&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2023.3254213&rft_dat=%3Cproquest_RIE%3E2881524501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881524501&rft_id=info:pmid/&rft_ieee_id=10075635&rfr_iscdi=true