Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free

This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-11, Vol.59 (11), p.1-1
Hauptverfasser: Hsieh, Min-Fu, Lin, Lung-Hsin, Huynh, Thanh-Anh, Dorrell, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Hsieh, Min-Fu
Lin, Lung-Hsin
Huynh, Thanh-Anh
Dorrell, David
description This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The developed method can quickly obtain PMSM designs and parameters with a certain level of accuracy without using finite element (FE) simulation. Therefore, the users can take advantage of the platform and obtain the motor designs in a few seconds. The users only need to input key specifications, such as the torque required, speed, and voltage available, and the ML-based platform can predict and output a design that satisfies the specifications. In this paper, an EMC model is first developed, and FE is employed to validate its accuracy. With the EMC, more than 6000 motor models are produced as the data pool for the ML. The ML algorithms are trained by making use of this motor design data pool so that the design platform can be built. Finally, the FE simulations validate the accuracy of the proposed method.
doi_str_mv 10.1109/TMAG.2023.3309151
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2881503010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10232900</ieee_id><sourcerecordid>2881503010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c54bb355ac7dd59664dd21babe0d46233d1d0942475d451724d6c3059fb4b5753</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExH9ASYeNvFcnP0q7JGAoAmNJOC52XanUEJ3cbdo-PeW4MHLTCZ5n5nMQ8gjgwFjoF_W2Xg-4MDFQAjQTLEr0mNasgQg1dekB8BGiZapvCV3Me66USoGPRKn-I17f2jQtdRXNDPltnZIF2iCq90mKUxES6cY642jy71pKx8a2hW6xNAYd-Yys3HY0tXJldvgnT9Gmvm2i6z9jwmWrurm2JG1d3QWEO_JTWX2ER_-ep98zl7Xk7dk8TF_n4wXScll2ialkkUhlDLl0Fql01Ray1lhCgQrUy6EZRa05HKobPfMkEublgKUrgpZqKESffJ82XsI_uuIsc13_hhcdzLnoxFTIIBBl2KXVBl8jAGr_BDqxoRTziA_u83PbvOz2_zPbcc8XZgaEf_lueAaQPwCUXd19w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881503010</pqid></control><display><type>article</type><title>Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free</title><source>IEEE Electronic Library (IEL)</source><creator>Hsieh, Min-Fu ; Lin, Lung-Hsin ; Huynh, Thanh-Anh ; Dorrell, David</creator><creatorcontrib>Hsieh, Min-Fu ; Lin, Lung-Hsin ; Huynh, Thanh-Anh ; Dorrell, David</creatorcontrib><description>This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The developed method can quickly obtain PMSM designs and parameters with a certain level of accuracy without using finite element (FE) simulation. Therefore, the users can take advantage of the platform and obtain the motor designs in a few seconds. The users only need to input key specifications, such as the torque required, speed, and voltage available, and the ML-based platform can predict and output a design that satisfies the specifications. In this paper, an EMC model is first developed, and FE is employed to validate its accuracy. With the EMC, more than 6000 motor models are produced as the data pool for the ML. The ML algorithms are trained by making use of this motor design data pool so that the design platform can be built. Finally, the FE simulations validate the accuracy of the proposed method.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3309151</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Circuit design ; Computer simulation ; Electromagnetic compatibility ; Finite element method ; Machine learning ; Magnetic circuits ; Magnetic fields ; Magnetic flux ; Magnetism ; Permanent magnet motors ; permanent magnet synchronous motor (PMSM) ; Permanent magnets ; regression ; Rotors ; Specifications ; Synchronous motors ; Windings</subject><ispartof>IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c54bb355ac7dd59664dd21babe0d46233d1d0942475d451724d6c3059fb4b5753</cites><orcidid>0000-0002-7691-711X ; 0000-0002-5514-3397 ; 0000-0001-8060-3386 ; 0009-0004-8816-3804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10232900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10232900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsieh, Min-Fu</creatorcontrib><creatorcontrib>Lin, Lung-Hsin</creatorcontrib><creatorcontrib>Huynh, Thanh-Anh</creatorcontrib><creatorcontrib>Dorrell, David</creatorcontrib><title>Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The developed method can quickly obtain PMSM designs and parameters with a certain level of accuracy without using finite element (FE) simulation. Therefore, the users can take advantage of the platform and obtain the motor designs in a few seconds. The users only need to input key specifications, such as the torque required, speed, and voltage available, and the ML-based platform can predict and output a design that satisfies the specifications. In this paper, an EMC model is first developed, and FE is employed to validate its accuracy. With the EMC, more than 6000 motor models are produced as the data pool for the ML. The ML algorithms are trained by making use of this motor design data pool so that the design platform can be built. Finally, the FE simulations validate the accuracy of the proposed method.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Circuit design</subject><subject>Computer simulation</subject><subject>Electromagnetic compatibility</subject><subject>Finite element method</subject><subject>Machine learning</subject><subject>Magnetic circuits</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Permanent magnet motors</subject><subject>permanent magnet synchronous motor (PMSM)</subject><subject>Permanent magnets</subject><subject>regression</subject><subject>Rotors</subject><subject>Specifications</subject><subject>Synchronous motors</subject><subject>Windings</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExH9ASYeNvFcnP0q7JGAoAmNJOC52XanUEJ3cbdo-PeW4MHLTCZ5n5nMQ8gjgwFjoF_W2Xg-4MDFQAjQTLEr0mNasgQg1dekB8BGiZapvCV3Me66USoGPRKn-I17f2jQtdRXNDPltnZIF2iCq90mKUxES6cY642jy71pKx8a2hW6xNAYd-Yys3HY0tXJldvgnT9Gmvm2i6z9jwmWrurm2JG1d3QWEO_JTWX2ER_-ep98zl7Xk7dk8TF_n4wXScll2ialkkUhlDLl0Fql01Ray1lhCgQrUy6EZRa05HKobPfMkEublgKUrgpZqKESffJ82XsI_uuIsc13_hhcdzLnoxFTIIBBl2KXVBl8jAGr_BDqxoRTziA_u83PbvOz2_zPbcc8XZgaEf_lueAaQPwCUXd19w</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Hsieh, Min-Fu</creator><creator>Lin, Lung-Hsin</creator><creator>Huynh, Thanh-Anh</creator><creator>Dorrell, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7691-711X</orcidid><orcidid>https://orcid.org/0000-0002-5514-3397</orcidid><orcidid>https://orcid.org/0000-0001-8060-3386</orcidid><orcidid>https://orcid.org/0009-0004-8816-3804</orcidid></search><sort><creationdate>20231101</creationdate><title>Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free</title><author>Hsieh, Min-Fu ; Lin, Lung-Hsin ; Huynh, Thanh-Anh ; Dorrell, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c54bb355ac7dd59664dd21babe0d46233d1d0942475d451724d6c3059fb4b5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Circuit design</topic><topic>Computer simulation</topic><topic>Electromagnetic compatibility</topic><topic>Finite element method</topic><topic>Machine learning</topic><topic>Magnetic circuits</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Permanent magnet motors</topic><topic>permanent magnet synchronous motor (PMSM)</topic><topic>Permanent magnets</topic><topic>regression</topic><topic>Rotors</topic><topic>Specifications</topic><topic>Synchronous motors</topic><topic>Windings</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Min-Fu</creatorcontrib><creatorcontrib>Lin, Lung-Hsin</creatorcontrib><creatorcontrib>Huynh, Thanh-Anh</creatorcontrib><creatorcontrib>Dorrell, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsieh, Min-Fu</au><au>Lin, Lung-Hsin</au><au>Huynh, Thanh-Anh</au><au>Dorrell, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>59</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The developed method can quickly obtain PMSM designs and parameters with a certain level of accuracy without using finite element (FE) simulation. Therefore, the users can take advantage of the platform and obtain the motor designs in a few seconds. The users only need to input key specifications, such as the torque required, speed, and voltage available, and the ML-based platform can predict and output a design that satisfies the specifications. In this paper, an EMC model is first developed, and FE is employed to validate its accuracy. With the EMC, more than 6000 motor models are produced as the data pool for the ML. The ML algorithms are trained by making use of this motor design data pool so that the design platform can be built. Finally, the FE simulations validate the accuracy of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3309151</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7691-711X</orcidid><orcidid>https://orcid.org/0000-0002-5514-3397</orcidid><orcidid>https://orcid.org/0000-0001-8060-3386</orcidid><orcidid>https://orcid.org/0009-0004-8816-3804</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2881503010
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Circuit design
Computer simulation
Electromagnetic compatibility
Finite element method
Machine learning
Magnetic circuits
Magnetic fields
Magnetic flux
Magnetism
Permanent magnet motors
permanent magnet synchronous motor (PMSM)
Permanent magnets
regression
Rotors
Specifications
Synchronous motors
Windings
title Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Machine%20Learning-based%20Design%20Platform%20for%20Permanent%20Magnet%20Synchronous%20Motor%20Toward%20Simulation%20Free&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Hsieh,%20Min-Fu&rft.date=2023-11-01&rft.volume=59&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3309151&rft_dat=%3Cproquest_RIE%3E2881503010%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881503010&rft_id=info:pmid/&rft_ieee_id=10232900&rfr_iscdi=true