Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free
This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The devel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2023-11, Vol.59 (11), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 59 |
creator | Hsieh, Min-Fu Lin, Lung-Hsin Huynh, Thanh-Anh Dorrell, David |
description | This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The developed method can quickly obtain PMSM designs and parameters with a certain level of accuracy without using finite element (FE) simulation. Therefore, the users can take advantage of the platform and obtain the motor designs in a few seconds. The users only need to input key specifications, such as the torque required, speed, and voltage available, and the ML-based platform can predict and output a design that satisfies the specifications. In this paper, an EMC model is first developed, and FE is employed to validate its accuracy. With the EMC, more than 6000 motor models are produced as the data pool for the ML. The ML algorithms are trained by making use of this motor design data pool so that the design platform can be built. Finally, the FE simulations validate the accuracy of the proposed method. |
doi_str_mv | 10.1109/TMAG.2023.3309151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2881503010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10232900</ieee_id><sourcerecordid>2881503010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c54bb355ac7dd59664dd21babe0d46233d1d0942475d451724d6c3059fb4b5753</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExH9ASYeNvFcnP0q7JGAoAmNJOC52XanUEJ3cbdo-PeW4MHLTCZ5n5nMQ8gjgwFjoF_W2Xg-4MDFQAjQTLEr0mNasgQg1dekB8BGiZapvCV3Me66USoGPRKn-I17f2jQtdRXNDPltnZIF2iCq90mKUxES6cY642jy71pKx8a2hW6xNAYd-Yys3HY0tXJldvgnT9Gmvm2i6z9jwmWrurm2JG1d3QWEO_JTWX2ER_-ep98zl7Xk7dk8TF_n4wXScll2ialkkUhlDLl0Fql01Ray1lhCgQrUy6EZRa05HKobPfMkEublgKUrgpZqKESffJ82XsI_uuIsc13_hhcdzLnoxFTIIBBl2KXVBl8jAGr_BDqxoRTziA_u83PbvOz2_zPbcc8XZgaEf_lueAaQPwCUXd19w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881503010</pqid></control><display><type>article</type><title>Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free</title><source>IEEE Electronic Library (IEL)</source><creator>Hsieh, Min-Fu ; Lin, Lung-Hsin ; Huynh, Thanh-Anh ; Dorrell, David</creator><creatorcontrib>Hsieh, Min-Fu ; Lin, Lung-Hsin ; Huynh, Thanh-Anh ; Dorrell, David</creatorcontrib><description>This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The developed method can quickly obtain PMSM designs and parameters with a certain level of accuracy without using finite element (FE) simulation. Therefore, the users can take advantage of the platform and obtain the motor designs in a few seconds. The users only need to input key specifications, such as the torque required, speed, and voltage available, and the ML-based platform can predict and output a design that satisfies the specifications. In this paper, an EMC model is first developed, and FE is employed to validate its accuracy. With the EMC, more than 6000 motor models are produced as the data pool for the ML. The ML algorithms are trained by making use of this motor design data pool so that the design platform can be built. Finally, the FE simulations validate the accuracy of the proposed method.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3309151</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Circuit design ; Computer simulation ; Electromagnetic compatibility ; Finite element method ; Machine learning ; Magnetic circuits ; Magnetic fields ; Magnetic flux ; Magnetism ; Permanent magnet motors ; permanent magnet synchronous motor (PMSM) ; Permanent magnets ; regression ; Rotors ; Specifications ; Synchronous motors ; Windings</subject><ispartof>IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c54bb355ac7dd59664dd21babe0d46233d1d0942475d451724d6c3059fb4b5753</cites><orcidid>0000-0002-7691-711X ; 0000-0002-5514-3397 ; 0000-0001-8060-3386 ; 0009-0004-8816-3804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10232900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10232900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsieh, Min-Fu</creatorcontrib><creatorcontrib>Lin, Lung-Hsin</creatorcontrib><creatorcontrib>Huynh, Thanh-Anh</creatorcontrib><creatorcontrib>Dorrell, David</creatorcontrib><title>Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The developed method can quickly obtain PMSM designs and parameters with a certain level of accuracy without using finite element (FE) simulation. Therefore, the users can take advantage of the platform and obtain the motor designs in a few seconds. The users only need to input key specifications, such as the torque required, speed, and voltage available, and the ML-based platform can predict and output a design that satisfies the specifications. In this paper, an EMC model is first developed, and FE is employed to validate its accuracy. With the EMC, more than 6000 motor models are produced as the data pool for the ML. The ML algorithms are trained by making use of this motor design data pool so that the design platform can be built. Finally, the FE simulations validate the accuracy of the proposed method.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Circuit design</subject><subject>Computer simulation</subject><subject>Electromagnetic compatibility</subject><subject>Finite element method</subject><subject>Machine learning</subject><subject>Magnetic circuits</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Permanent magnet motors</subject><subject>permanent magnet synchronous motor (PMSM)</subject><subject>Permanent magnets</subject><subject>regression</subject><subject>Rotors</subject><subject>Specifications</subject><subject>Synchronous motors</subject><subject>Windings</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExH9ASYeNvFcnP0q7JGAoAmNJOC52XanUEJ3cbdo-PeW4MHLTCZ5n5nMQ8gjgwFjoF_W2Xg-4MDFQAjQTLEr0mNasgQg1dekB8BGiZapvCV3Me66USoGPRKn-I17f2jQtdRXNDPltnZIF2iCq90mKUxES6cY642jy71pKx8a2hW6xNAYd-Yys3HY0tXJldvgnT9Gmvm2i6z9jwmWrurm2JG1d3QWEO_JTWX2ER_-ep98zl7Xk7dk8TF_n4wXScll2ialkkUhlDLl0Fql01Ray1lhCgQrUy6EZRa05HKobPfMkEublgKUrgpZqKESffJ82XsI_uuIsc13_hhcdzLnoxFTIIBBl2KXVBl8jAGr_BDqxoRTziA_u83PbvOz2_zPbcc8XZgaEf_lueAaQPwCUXd19w</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Hsieh, Min-Fu</creator><creator>Lin, Lung-Hsin</creator><creator>Huynh, Thanh-Anh</creator><creator>Dorrell, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7691-711X</orcidid><orcidid>https://orcid.org/0000-0002-5514-3397</orcidid><orcidid>https://orcid.org/0000-0001-8060-3386</orcidid><orcidid>https://orcid.org/0009-0004-8816-3804</orcidid></search><sort><creationdate>20231101</creationdate><title>Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free</title><author>Hsieh, Min-Fu ; Lin, Lung-Hsin ; Huynh, Thanh-Anh ; Dorrell, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c54bb355ac7dd59664dd21babe0d46233d1d0942475d451724d6c3059fb4b5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Circuit design</topic><topic>Computer simulation</topic><topic>Electromagnetic compatibility</topic><topic>Finite element method</topic><topic>Machine learning</topic><topic>Magnetic circuits</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Permanent magnet motors</topic><topic>permanent magnet synchronous motor (PMSM)</topic><topic>Permanent magnets</topic><topic>regression</topic><topic>Rotors</topic><topic>Specifications</topic><topic>Synchronous motors</topic><topic>Windings</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Min-Fu</creatorcontrib><creatorcontrib>Lin, Lung-Hsin</creatorcontrib><creatorcontrib>Huynh, Thanh-Anh</creatorcontrib><creatorcontrib>Dorrell, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsieh, Min-Fu</au><au>Lin, Lung-Hsin</au><au>Huynh, Thanh-Anh</au><au>Dorrell, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>59</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper proposes an approach that combines machine learning (ML) and equivalent magnetic circuit (EMC) analysis for the design of surface-mounted permanent magnet synchronous motors (SPMSMs). This is aimed at building a service platform for non-professional users who need motor designs. The developed method can quickly obtain PMSM designs and parameters with a certain level of accuracy without using finite element (FE) simulation. Therefore, the users can take advantage of the platform and obtain the motor designs in a few seconds. The users only need to input key specifications, such as the torque required, speed, and voltage available, and the ML-based platform can predict and output a design that satisfies the specifications. In this paper, an EMC model is first developed, and FE is employed to validate its accuracy. With the EMC, more than 6000 motor models are produced as the data pool for the ML. The ML algorithms are trained by making use of this motor design data pool so that the design platform can be built. Finally, the FE simulations validate the accuracy of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3309151</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7691-711X</orcidid><orcidid>https://orcid.org/0000-0002-5514-3397</orcidid><orcidid>https://orcid.org/0000-0001-8060-3386</orcidid><orcidid>https://orcid.org/0009-0004-8816-3804</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_journals_2881503010 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Circuit design Computer simulation Electromagnetic compatibility Finite element method Machine learning Magnetic circuits Magnetic fields Magnetic flux Magnetism Permanent magnet motors permanent magnet synchronous motor (PMSM) Permanent magnets regression Rotors Specifications Synchronous motors Windings |
title | Development of Machine Learning-based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Machine%20Learning-based%20Design%20Platform%20for%20Permanent%20Magnet%20Synchronous%20Motor%20Toward%20Simulation%20Free&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Hsieh,%20Min-Fu&rft.date=2023-11-01&rft.volume=59&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3309151&rft_dat=%3Cproquest_RIE%3E2881503010%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881503010&rft_id=info:pmid/&rft_ieee_id=10232900&rfr_iscdi=true |