Domain of Existence of the Sum of a Series of Exponential Monomials
In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of c...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2023-10, Vol.114 (3-4), p.508-521 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 521 |
---|---|
container_issue | 3-4 |
container_start_page | 508 |
container_title | Mathematical Notes |
container_volume | 114 |
creator | Krivosheev, A. S. Krivosheeva, O. A. |
description | In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of convergence, the domain of existence of the sum of this series coincides with the given domain of convergence. We consider sequences of exponents having an angular density (measurable) and the zero condensation index. Various criteria related to the distribution of singular points of the sum of a series of exponential monomials on the boundary of its convergence domain are obtained. In particular, in the class of the indicated sequences, a criterion is obtained that all boundary points of a chosen convex domain are special for any sum of a series with a given domain of convergence. The criteria are formulated using simple geometric characteristics of the sequence of exponents and a convex domain (the angular density and the length of the boundary arc). It is also shown that the condition that the condensation index is equal to zero is essential. |
doi_str_mv | 10.1134/S0001434623090213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2881354707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881354707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5ea5d00db4b8f4ff6fe279ccb72bcc198db654a19697eecde6febb849c5ef10b3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VMmibpUer6B1Y8rJ5Lk060i03WpAv67U2p4EE8vTfM772BIeQc6CVAwa82lFLgBResoBVlUByQBZSyyJWS4pAspnU-7Y_JSYzbNIEAuiD1jR_a3mXeZqvPPo7oDE7D-IbZZj9Mts02GHqMM7PzDt3Yt-_Zo3d-SCaekiObBM9-dEleblfP9X2-frp7qK_XuWFCjXmJbdlR2mmuleXWCotMVsZoybQxUKlOi5K3UIlKIpoOE6C14pUp0QLVxZJczL274D_2GMdm6_fBpZMNUwqKkksqEwUzZYKPMaBtdqEf2vDVAG2mXzV_fpUybM7ExLpXDL_N_4e-AdjJarc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881354707</pqid></control><display><type>article</type><title>Domain of Existence of the Sum of a Series of Exponential Monomials</title><source>SpringerLink Journals</source><creator>Krivosheev, A. S. ; Krivosheeva, O. A.</creator><creatorcontrib>Krivosheev, A. S. ; Krivosheeva, O. A.</creatorcontrib><description>In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of convergence, the domain of existence of the sum of this series coincides with the given domain of convergence. We consider sequences of exponents having an angular density (measurable) and the zero condensation index. Various criteria related to the distribution of singular points of the sum of a series of exponential monomials on the boundary of its convergence domain are obtained. In particular, in the class of the indicated sequences, a criterion is obtained that all boundary points of a chosen convex domain are special for any sum of a series with a given domain of convergence. The criteria are formulated using simple geometric characteristics of the sequence of exponents and a convex domain (the angular density and the length of the boundary arc). It is also shown that the condition that the condensation index is equal to zero is essential.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434623090213</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Convergence ; Criteria ; Density ; Exponents ; Mathematics ; Mathematics and Statistics ; Sequences ; Series (mathematics)</subject><ispartof>Mathematical Notes, 2023-10, Vol.114 (3-4), p.508-521</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5ea5d00db4b8f4ff6fe279ccb72bcc198db654a19697eecde6febb849c5ef10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434623090213$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434623090213$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Krivosheev, A. S.</creatorcontrib><creatorcontrib>Krivosheeva, O. A.</creatorcontrib><title>Domain of Existence of the Sum of a Series of Exponential Monomials</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of convergence, the domain of existence of the sum of this series coincides with the given domain of convergence. We consider sequences of exponents having an angular density (measurable) and the zero condensation index. Various criteria related to the distribution of singular points of the sum of a series of exponential monomials on the boundary of its convergence domain are obtained. In particular, in the class of the indicated sequences, a criterion is obtained that all boundary points of a chosen convex domain are special for any sum of a series with a given domain of convergence. The criteria are formulated using simple geometric characteristics of the sequence of exponents and a convex domain (the angular density and the length of the boundary arc). It is also shown that the condition that the condensation index is equal to zero is essential.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Density</subject><subject>Exponents</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sequences</subject><subject>Series (mathematics)</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VMmibpUer6B1Y8rJ5Lk060i03WpAv67U2p4EE8vTfM772BIeQc6CVAwa82lFLgBResoBVlUByQBZSyyJWS4pAspnU-7Y_JSYzbNIEAuiD1jR_a3mXeZqvPPo7oDE7D-IbZZj9Mts02GHqMM7PzDt3Yt-_Zo3d-SCaekiObBM9-dEleblfP9X2-frp7qK_XuWFCjXmJbdlR2mmuleXWCotMVsZoybQxUKlOi5K3UIlKIpoOE6C14pUp0QLVxZJczL274D_2GMdm6_fBpZMNUwqKkksqEwUzZYKPMaBtdqEf2vDVAG2mXzV_fpUybM7ExLpXDL_N_4e-AdjJarc</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Krivosheev, A. S.</creator><creator>Krivosheeva, O. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Domain of Existence of the Sum of a Series of Exponential Monomials</title><author>Krivosheev, A. S. ; Krivosheeva, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5ea5d00db4b8f4ff6fe279ccb72bcc198db654a19697eecde6febb849c5ef10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Density</topic><topic>Exponents</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sequences</topic><topic>Series (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krivosheev, A. S.</creatorcontrib><creatorcontrib>Krivosheeva, O. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krivosheev, A. S.</au><au>Krivosheeva, O. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain of Existence of the Sum of a Series of Exponential Monomials</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>114</volume><issue>3-4</issue><spage>508</spage><epage>521</epage><pages>508-521</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of convergence, the domain of existence of the sum of this series coincides with the given domain of convergence. We consider sequences of exponents having an angular density (measurable) and the zero condensation index. Various criteria related to the distribution of singular points of the sum of a series of exponential monomials on the boundary of its convergence domain are obtained. In particular, in the class of the indicated sequences, a criterion is obtained that all boundary points of a chosen convex domain are special for any sum of a series with a given domain of convergence. The criteria are formulated using simple geometric characteristics of the sequence of exponents and a convex domain (the angular density and the length of the boundary arc). It is also shown that the condition that the condensation index is equal to zero is essential.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434623090213</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2023-10, Vol.114 (3-4), p.508-521 |
issn | 0001-4346 1067-9073 1573-8876 |
language | eng |
recordid | cdi_proquest_journals_2881354707 |
source | SpringerLink Journals |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Convergence Criteria Density Exponents Mathematics Mathematics and Statistics Sequences Series (mathematics) |
title | Domain of Existence of the Sum of a Series of Exponential Monomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20of%20Existence%20of%20the%20Sum%20of%20a%20Series%20of%20Exponential%20Monomials&rft.jtitle=Mathematical%20Notes&rft.au=Krivosheev,%20A.%20S.&rft.date=2023-10-01&rft.volume=114&rft.issue=3-4&rft.spage=508&rft.epage=521&rft.pages=508-521&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434623090213&rft_dat=%3Cproquest_cross%3E2881354707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881354707&rft_id=info:pmid/&rfr_iscdi=true |