Domain of Existence of the Sum of a Series of Exponential Monomials

In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2023-10, Vol.114 (3-4), p.508-521
Hauptverfasser: Krivosheev, A. S., Krivosheeva, O. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 3-4
container_start_page 508
container_title Mathematical Notes
container_volume 114
creator Krivosheev, A. S.
Krivosheeva, O. A.
description In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of convergence, the domain of existence of the sum of this series coincides with the given domain of convergence. We consider sequences of exponents having an angular density (measurable) and the zero condensation index. Various criteria related to the distribution of singular points of the sum of a series of exponential monomials on the boundary of its convergence domain are obtained. In particular, in the class of the indicated sequences, a criterion is obtained that all boundary points of a chosen convex domain are special for any sum of a series with a given domain of convergence. The criteria are formulated using simple geometric characteristics of the sequence of exponents and a convex domain (the angular density and the length of the boundary arc). It is also shown that the condition that the condensation index is equal to zero is essential.
doi_str_mv 10.1134/S0001434623090213
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2881354707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881354707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5ea5d00db4b8f4ff6fe279ccb72bcc198db654a19697eecde6febb849c5ef10b3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VMmibpUer6B1Y8rJ5Lk060i03WpAv67U2p4EE8vTfM772BIeQc6CVAwa82lFLgBResoBVlUByQBZSyyJWS4pAspnU-7Y_JSYzbNIEAuiD1jR_a3mXeZqvPPo7oDE7D-IbZZj9Mts02GHqMM7PzDt3Yt-_Zo3d-SCaekiObBM9-dEleblfP9X2-frp7qK_XuWFCjXmJbdlR2mmuleXWCotMVsZoybQxUKlOi5K3UIlKIpoOE6C14pUp0QLVxZJczL274D_2GMdm6_fBpZMNUwqKkksqEwUzZYKPMaBtdqEf2vDVAG2mXzV_fpUybM7ExLpXDL_N_4e-AdjJarc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881354707</pqid></control><display><type>article</type><title>Domain of Existence of the Sum of a Series of Exponential Monomials</title><source>SpringerLink Journals</source><creator>Krivosheev, A. S. ; Krivosheeva, O. A.</creator><creatorcontrib>Krivosheev, A. S. ; Krivosheeva, O. A.</creatorcontrib><description>In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of convergence, the domain of existence of the sum of this series coincides with the given domain of convergence. We consider sequences of exponents having an angular density (measurable) and the zero condensation index. Various criteria related to the distribution of singular points of the sum of a series of exponential monomials on the boundary of its convergence domain are obtained. In particular, in the class of the indicated sequences, a criterion is obtained that all boundary points of a chosen convex domain are special for any sum of a series with a given domain of convergence. The criteria are formulated using simple geometric characteristics of the sequence of exponents and a convex domain (the angular density and the length of the boundary arc). It is also shown that the condition that the condensation index is equal to zero is essential.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434623090213</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Convergence ; Criteria ; Density ; Exponents ; Mathematics ; Mathematics and Statistics ; Sequences ; Series (mathematics)</subject><ispartof>Mathematical Notes, 2023-10, Vol.114 (3-4), p.508-521</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5ea5d00db4b8f4ff6fe279ccb72bcc198db654a19697eecde6febb849c5ef10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434623090213$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434623090213$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Krivosheev, A. S.</creatorcontrib><creatorcontrib>Krivosheeva, O. A.</creatorcontrib><title>Domain of Existence of the Sum of a Series of Exponential Monomials</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of convergence, the domain of existence of the sum of this series coincides with the given domain of convergence. We consider sequences of exponents having an angular density (measurable) and the zero condensation index. Various criteria related to the distribution of singular points of the sum of a series of exponential monomials on the boundary of its convergence domain are obtained. In particular, in the class of the indicated sequences, a criterion is obtained that all boundary points of a chosen convex domain are special for any sum of a series with a given domain of convergence. The criteria are formulated using simple geometric characteristics of the sequence of exponents and a convex domain (the angular density and the length of the boundary arc). It is also shown that the condition that the condensation index is equal to zero is essential.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Density</subject><subject>Exponents</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sequences</subject><subject>Series (mathematics)</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VMmibpUer6B1Y8rJ5Lk060i03WpAv67U2p4EE8vTfM772BIeQc6CVAwa82lFLgBResoBVlUByQBZSyyJWS4pAspnU-7Y_JSYzbNIEAuiD1jR_a3mXeZqvPPo7oDE7D-IbZZj9Mts02GHqMM7PzDt3Yt-_Zo3d-SCaekiObBM9-dEleblfP9X2-frp7qK_XuWFCjXmJbdlR2mmuleXWCotMVsZoybQxUKlOi5K3UIlKIpoOE6C14pUp0QLVxZJczL274D_2GMdm6_fBpZMNUwqKkksqEwUzZYKPMaBtdqEf2vDVAG2mXzV_fpUybM7ExLpXDL_N_4e-AdjJarc</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Krivosheev, A. S.</creator><creator>Krivosheeva, O. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Domain of Existence of the Sum of a Series of Exponential Monomials</title><author>Krivosheev, A. S. ; Krivosheeva, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5ea5d00db4b8f4ff6fe279ccb72bcc198db654a19697eecde6febb849c5ef10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Density</topic><topic>Exponents</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sequences</topic><topic>Series (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krivosheev, A. S.</creatorcontrib><creatorcontrib>Krivosheeva, O. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krivosheev, A. S.</au><au>Krivosheeva, O. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain of Existence of the Sum of a Series of Exponential Monomials</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>114</volume><issue>3-4</issue><spage>508</spage><epage>521</epage><pages>508-521</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of convergence, the domain of existence of the sum of this series coincides with the given domain of convergence. We consider sequences of exponents having an angular density (measurable) and the zero condensation index. Various criteria related to the distribution of singular points of the sum of a series of exponential monomials on the boundary of its convergence domain are obtained. In particular, in the class of the indicated sequences, a criterion is obtained that all boundary points of a chosen convex domain are special for any sum of a series with a given domain of convergence. The criteria are formulated using simple geometric characteristics of the sequence of exponents and a convex domain (the angular density and the length of the boundary arc). It is also shown that the condition that the condensation index is equal to zero is essential.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434623090213</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2023-10, Vol.114 (3-4), p.508-521
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2881354707
source SpringerLink Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Convergence
Criteria
Density
Exponents
Mathematics
Mathematics and Statistics
Sequences
Series (mathematics)
title Domain of Existence of the Sum of a Series of Exponential Monomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20of%20Existence%20of%20the%20Sum%20of%20a%20Series%20of%20Exponential%20Monomials&rft.jtitle=Mathematical%20Notes&rft.au=Krivosheev,%20A.%20S.&rft.date=2023-10-01&rft.volume=114&rft.issue=3-4&rft.spage=508&rft.epage=521&rft.pages=508-521&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434623090213&rft_dat=%3Cproquest_cross%3E2881354707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881354707&rft_id=info:pmid/&rfr_iscdi=true