On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups

In the group algebra of the symmetric group , we consider the subalgebra consisting of all functions invariant with respect to left and right shifts by elements of the Young subgroup . We discuss structure constants of the algebra and construct an algebra with continuous parameters extrapolating alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2023-10, Vol.114 (3-4), p.583-592
1. Verfasser: Neretin, Yu. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 592
container_issue 3-4
container_start_page 583
container_title Mathematical Notes
container_volume 114
creator Neretin, Yu. A.
description In the group algebra of the symmetric group , we consider the subalgebra consisting of all functions invariant with respect to left and right shifts by elements of the Young subgroup . We discuss structure constants of the algebra and construct an algebra with continuous parameters extrapolating algebras , this can also be rewritten as an asymptotic algebra as (for fixed ). We show that there is a natural map from the Lie algebra of the group of pure braids to (and therefore this Lie algebra acts in spaces of multiplicities of the quasiregular representation of the group in functions on ).
doi_str_mv 10.1134/S0001434623090262
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2881354670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881354670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1832-7b341b30cc163d69335c30e63d79241a2c52b5e891d52069d66df4a5921a9d33</originalsourceid><addsrcrecordid>eNp1UE1LwzAYDqLgnP4AbwHP1bx5k7Q5jqlTGEzsLp5Km6Z1Y2tq0iL79-s2wYN4ej-eL3gIuQV2D4DiIWWMgUChODLNuOJnZAQyxihJYnVORgc4OuCX5CqE9XCBAjYib4uGTja1LXweqKvoo-uLjaVTF2x3fKS77dZ2fmXozLu-DfR71X3SdxtaazraOfrh-qamaV_UR_yaXFT5Jtibnzkmy-en5fQlmi9mr9PJPDKQII_iAgUUyIwBhaXSiNIgs8Meay4g50byQtpEQyk5U7pUqqxELjWHXJeIY3J3sm29--pt6LK1630zJGY8SQClUDEbWHBiGe9C8LbKWr_a5n6XAcsOvWV_ehs0_KQJA7eprf91_l-0B3YlbM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881354670</pqid></control><display><type>article</type><title>On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups</title><source>SpringerNature Journals</source><creator>Neretin, Yu. A.</creator><creatorcontrib>Neretin, Yu. A.</creatorcontrib><description>In the group algebra of the symmetric group , we consider the subalgebra consisting of all functions invariant with respect to left and right shifts by elements of the Young subgroup . We discuss structure constants of the algebra and construct an algebra with continuous parameters extrapolating algebras , this can also be rewritten as an asymptotic algebra as (for fixed ). We show that there is a natural map from the Lie algebra of the group of pure braids to (and therefore this Lie algebra acts in spaces of multiplicities of the quasiregular representation of the group in functions on ).</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434623090262</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Algebra ; Group theory ; Lie groups ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Subgroups</subject><ispartof>Mathematical Notes, 2023-10, Vol.114 (3-4), p.583-592</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1832-7b341b30cc163d69335c30e63d79241a2c52b5e891d52069d66df4a5921a9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434623090262$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434623090262$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Neretin, Yu. A.</creatorcontrib><title>On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>In the group algebra of the symmetric group , we consider the subalgebra consisting of all functions invariant with respect to left and right shifts by elements of the Young subgroup . We discuss structure constants of the algebra and construct an algebra with continuous parameters extrapolating algebras , this can also be rewritten as an asymptotic algebra as (for fixed ). We show that there is a natural map from the Lie algebra of the group of pure braids to (and therefore this Lie algebra acts in spaces of multiplicities of the quasiregular representation of the group in functions on ).</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Algebra</subject><subject>Group theory</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subgroups</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LwzAYDqLgnP4AbwHP1bx5k7Q5jqlTGEzsLp5Km6Z1Y2tq0iL79-s2wYN4ej-eL3gIuQV2D4DiIWWMgUChODLNuOJnZAQyxihJYnVORgc4OuCX5CqE9XCBAjYib4uGTja1LXweqKvoo-uLjaVTF2x3fKS77dZ2fmXozLu-DfR71X3SdxtaazraOfrh-qamaV_UR_yaXFT5Jtibnzkmy-en5fQlmi9mr9PJPDKQII_iAgUUyIwBhaXSiNIgs8Meay4g50byQtpEQyk5U7pUqqxELjWHXJeIY3J3sm29--pt6LK1630zJGY8SQClUDEbWHBiGe9C8LbKWr_a5n6XAcsOvWV_ehs0_KQJA7eprf91_l-0B3YlbM8</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Neretin, Yu. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups</title><author>Neretin, Yu. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1832-7b341b30cc163d69335c30e63d79241a2c52b5e891d52069d66df4a5921a9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Algebra</topic><topic>Group theory</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neretin, Yu. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neretin, Yu. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>114</volume><issue>3-4</issue><spage>583</spage><epage>592</epage><pages>583-592</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>In the group algebra of the symmetric group , we consider the subalgebra consisting of all functions invariant with respect to left and right shifts by elements of the Young subgroup . We discuss structure constants of the algebra and construct an algebra with continuous parameters extrapolating algebras , this can also be rewritten as an asymptotic algebra as (for fixed ). We show that there is a natural map from the Lie algebra of the group of pure braids to (and therefore this Lie algebra acts in spaces of multiplicities of the quasiregular representation of the group in functions on ).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434623090262</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2023-10, Vol.114 (3-4), p.583-592
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2881354670
source SpringerNature Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Algebra
Group theory
Lie groups
Mathematical analysis
Mathematics
Mathematics and Statistics
Subgroups
title On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Algebras%20of%20Double%20Cosets%20of%20Symmetric%20Groups%20with%20Respect%20to%20Young%20Subgroups&rft.jtitle=Mathematical%20Notes&rft.au=Neretin,%20Yu.%20A.&rft.date=2023-10-01&rft.volume=114&rft.issue=3-4&rft.spage=583&rft.epage=592&rft.pages=583-592&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434623090262&rft_dat=%3Cproquest_cross%3E2881354670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881354670&rft_id=info:pmid/&rfr_iscdi=true