Some comments on “A Hermite spline approach for modelling population mortality” by Tang, Li & Tickle (2022)

Tang et al. (2022) propose a new class of models for stochastic mortality modelling using Hermite splines. There are four useful features of this class that are worth emphasising. First, for single-sex datasets, this new class of projection models can be fitted as a generalised linear model. Second,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of actuarial science 2023-11, Vol.17 (3), p.643-646
1. Verfasser: Richards, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 646
container_issue 3
container_start_page 643
container_title Annals of actuarial science
container_volume 17
creator Richards, Stephen J.
description Tang et al. (2022) propose a new class of models for stochastic mortality modelling using Hermite splines. There are four useful features of this class that are worth emphasising. First, for single-sex datasets, this new class of projection models can be fitted as a generalised linear model. Second, these models can automatically extrapolate mortality rates to ages above the maximum age of the data set. Third, simpler sub-variants of the models exist for forecasting when one of the variables lacks a clear drift. Finally, a minor reparameterisation increases the quality of long-range forecasts of period mortality.
doi_str_mv 10.1017/S174849952300012X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2881259035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S174849952300012X</cupid><sourcerecordid>2881259035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-c27e9cfcf0941d254c1e07730f2850e9bb1ddc61c44f60c525d2582ac0ae08f33</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhhdRsNQ-gLeAIAquTrJJd3MsRa1Q8NAK3pZsNqmpu5s12R5664Poy_VJTGmhB_E0w8z3__8wUXSJ4R4DTh9mOKUZ5ZyRBAAweT-JertRzADI6aHf7c-jgffLwADlkCW8F9mZrRWStq5V03lkG7TdfI_QRLnadAr5tjKNQqJtnRXyA2nrUG1LVYXxArW2XVWiM0FVW9eJynTr7eYHFWs0F83iDk0NukZzIz8rhW4IEHJ7EZ1pUXk1ONR-9Pb0OB9P4unr88t4NI1lQoZdLEmquNRSA6e4JIxKrCBNE9AkY6B4UeCylEMsKdVDkIywAGVESBAKMp0k_ehq7xsO_1op3-VLu3JNiMxJlmHCOCQsUHhPSWe9d0rnrTO1cOscQ757bf7ntUGD9holbWP8UZGlhHPKMAlIcrAVdeFMuVDH9P-NfwHtqYW2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881259035</pqid></control><display><type>article</type><title>Some comments on “A Hermite spline approach for modelling population mortality” by Tang, Li &amp; Tickle (2022)</title><source>Cambridge University Press Journals Complete</source><creator>Richards, Stephen J.</creator><creatorcontrib>Richards, Stephen J.</creatorcontrib><description>Tang et al. (2022) propose a new class of models for stochastic mortality modelling using Hermite splines. There are four useful features of this class that are worth emphasising. First, for single-sex datasets, this new class of projection models can be fitted as a generalised linear model. Second, these models can automatically extrapolate mortality rates to ages above the maximum age of the data set. Third, simpler sub-variants of the models exist for forecasting when one of the variables lacks a clear drift. Finally, a minor reparameterisation increases the quality of long-range forecasts of period mortality.</description><identifier>ISSN: 1748-4995</identifier><identifier>EISSN: 1748-5002</identifier><identifier>DOI: 10.1017/S174849952300012X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Actuarial science ; Age ; Datasets ; Females ; Mortality ; Original Research Paper</subject><ispartof>Annals of actuarial science, 2023-11, Vol.17 (3), p.643-646</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Institute and Faculty of Actuaries</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-c27e9cfcf0941d254c1e07730f2850e9bb1ddc61c44f60c525d2582ac0ae08f33</cites><orcidid>0000-0001-6859-6347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S174849952300012X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Richards, Stephen J.</creatorcontrib><title>Some comments on “A Hermite spline approach for modelling population mortality” by Tang, Li &amp; Tickle (2022)</title><title>Annals of actuarial science</title><addtitle>Ann. actuar. sci</addtitle><description>Tang et al. (2022) propose a new class of models for stochastic mortality modelling using Hermite splines. There are four useful features of this class that are worth emphasising. First, for single-sex datasets, this new class of projection models can be fitted as a generalised linear model. Second, these models can automatically extrapolate mortality rates to ages above the maximum age of the data set. Third, simpler sub-variants of the models exist for forecasting when one of the variables lacks a clear drift. Finally, a minor reparameterisation increases the quality of long-range forecasts of period mortality.</description><subject>Actuarial science</subject><subject>Age</subject><subject>Datasets</subject><subject>Females</subject><subject>Mortality</subject><subject>Original Research Paper</subject><issn>1748-4995</issn><issn>1748-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKAzEQhhdRsNQ-gLeAIAquTrJJd3MsRa1Q8NAK3pZsNqmpu5s12R5664Poy_VJTGmhB_E0w8z3__8wUXSJ4R4DTh9mOKUZ5ZyRBAAweT-JertRzADI6aHf7c-jgffLwADlkCW8F9mZrRWStq5V03lkG7TdfI_QRLnadAr5tjKNQqJtnRXyA2nrUG1LVYXxArW2XVWiM0FVW9eJynTr7eYHFWs0F83iDk0NukZzIz8rhW4IEHJ7EZ1pUXk1ONR-9Pb0OB9P4unr88t4NI1lQoZdLEmquNRSA6e4JIxKrCBNE9AkY6B4UeCylEMsKdVDkIywAGVESBAKMp0k_ehq7xsO_1op3-VLu3JNiMxJlmHCOCQsUHhPSWe9d0rnrTO1cOscQ757bf7ntUGD9holbWP8UZGlhHPKMAlIcrAVdeFMuVDH9P-NfwHtqYW2</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Richards, Stephen J.</creator><general>Cambridge University Press</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>8A9</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6859-6347</orcidid></search><sort><creationdate>20231101</creationdate><title>Some comments on “A Hermite spline approach for modelling population mortality” by Tang, Li &amp; Tickle (2022)</title><author>Richards, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-c27e9cfcf0941d254c1e07730f2850e9bb1ddc61c44f60c525d2582ac0ae08f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuarial science</topic><topic>Age</topic><topic>Datasets</topic><topic>Females</topic><topic>Mortality</topic><topic>Original Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richards, Stephen J.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Accounting &amp; Tax Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of actuarial science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richards, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some comments on “A Hermite spline approach for modelling population mortality” by Tang, Li &amp; Tickle (2022)</atitle><jtitle>Annals of actuarial science</jtitle><addtitle>Ann. actuar. sci</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><spage>643</spage><epage>646</epage><pages>643-646</pages><issn>1748-4995</issn><eissn>1748-5002</eissn><abstract>Tang et al. (2022) propose a new class of models for stochastic mortality modelling using Hermite splines. There are four useful features of this class that are worth emphasising. First, for single-sex datasets, this new class of projection models can be fitted as a generalised linear model. Second, these models can automatically extrapolate mortality rates to ages above the maximum age of the data set. Third, simpler sub-variants of the models exist for forecasting when one of the variables lacks a clear drift. Finally, a minor reparameterisation increases the quality of long-range forecasts of period mortality.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S174849952300012X</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6859-6347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-4995
ispartof Annals of actuarial science, 2023-11, Vol.17 (3), p.643-646
issn 1748-4995
1748-5002
language eng
recordid cdi_proquest_journals_2881259035
source Cambridge University Press Journals Complete
subjects Actuarial science
Age
Datasets
Females
Mortality
Original Research Paper
title Some comments on “A Hermite spline approach for modelling population mortality” by Tang, Li & Tickle (2022)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20comments%20on%20%E2%80%9CA%20Hermite%20spline%20approach%20for%20modelling%20population%20mortality%E2%80%9D%20by%20Tang,%20Li%20&%20Tickle%20(2022)&rft.jtitle=Annals%20of%20actuarial%20science&rft.au=Richards,%20Stephen%20J.&rft.date=2023-11-01&rft.volume=17&rft.issue=3&rft.spage=643&rft.epage=646&rft.pages=643-646&rft.issn=1748-4995&rft.eissn=1748-5002&rft_id=info:doi/10.1017/S174849952300012X&rft_dat=%3Cproquest_cross%3E2881259035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881259035&rft_id=info:pmid/&rft_cupid=10_1017_S174849952300012X&rfr_iscdi=true