Traveling Wave for a diffusive SIR model with delay in diffusion term
This paper is concerned with traveling waves to an diffusive SIR model with delay placed in the diffusion terms as well as nonlinear incidence rate with delay. Using a cross iteration scheme and partial monotone conditions it will be shown that the existence of quasi upper and lower solutions is a s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Barker, William Kyle |
description | This paper is concerned with traveling waves to an diffusive SIR model with delay placed in the diffusion terms as well as nonlinear incidence rate with delay. Using a cross iteration scheme and partial monotone conditions it will be shown that the existence of quasi upper and lower solutions is a sufficient condition for the existence of a traveling wave front. This will be shown via Schauder's fixed point theorem. Given an appropriate basic reproduction number the traveling wave front will flow from a disease-free steady state to endemic steady state. The construction of quasi upper and lower solutions will be carried out for a specific model. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2881056835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881056835</sourcerecordid><originalsourceid>FETCH-proquest_journals_28810568353</originalsourceid><addsrcrecordid>eNqNir0KwjAYRYMgWLTv8IFzIU1MzS4VXbXgWAJNNCVNND-Kb28G3Z3uuZwzQwWhtK74hpAFKkMYMcak2RLGaIHazounNNpe4ZIBlPMgYNBKpaDzPx9PMLlBGnjpeIMM4g3a_gpnIUo_rdBcCRNk-d0lWu_bbneo7t49kgyxH13yNquecF5j1nDK6H_VBykkOlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881056835</pqid></control><display><type>article</type><title>Traveling Wave for a diffusive SIR model with delay in diffusion term</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Barker, William Kyle</creator><creatorcontrib>Barker, William Kyle</creatorcontrib><description>This paper is concerned with traveling waves to an diffusive SIR model with delay placed in the diffusion terms as well as nonlinear incidence rate with delay. Using a cross iteration scheme and partial monotone conditions it will be shown that the existence of quasi upper and lower solutions is a sufficient condition for the existence of a traveling wave front. This will be shown via Schauder's fixed point theorem. Given an appropriate basic reproduction number the traveling wave front will flow from a disease-free steady state to endemic steady state. The construction of quasi upper and lower solutions will be carried out for a specific model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Delay ; Diffusion rate ; Fixed points (mathematics) ; Iterative methods ; Steady state ; Traveling waves ; Wave fronts</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Barker, William Kyle</creatorcontrib><title>Traveling Wave for a diffusive SIR model with delay in diffusion term</title><title>arXiv.org</title><description>This paper is concerned with traveling waves to an diffusive SIR model with delay placed in the diffusion terms as well as nonlinear incidence rate with delay. Using a cross iteration scheme and partial monotone conditions it will be shown that the existence of quasi upper and lower solutions is a sufficient condition for the existence of a traveling wave front. This will be shown via Schauder's fixed point theorem. Given an appropriate basic reproduction number the traveling wave front will flow from a disease-free steady state to endemic steady state. The construction of quasi upper and lower solutions will be carried out for a specific model.</description><subject>Delay</subject><subject>Diffusion rate</subject><subject>Fixed points (mathematics)</subject><subject>Iterative methods</subject><subject>Steady state</subject><subject>Traveling waves</subject><subject>Wave fronts</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNir0KwjAYRYMgWLTv8IFzIU1MzS4VXbXgWAJNNCVNND-Kb28G3Z3uuZwzQwWhtK74hpAFKkMYMcak2RLGaIHazounNNpe4ZIBlPMgYNBKpaDzPx9PMLlBGnjpeIMM4g3a_gpnIUo_rdBcCRNk-d0lWu_bbneo7t49kgyxH13yNquecF5j1nDK6H_VBykkOlI</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Barker, William Kyle</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231020</creationdate><title>Traveling Wave for a diffusive SIR model with delay in diffusion term</title><author>Barker, William Kyle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28810568353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Delay</topic><topic>Diffusion rate</topic><topic>Fixed points (mathematics)</topic><topic>Iterative methods</topic><topic>Steady state</topic><topic>Traveling waves</topic><topic>Wave fronts</topic><toplevel>online_resources</toplevel><creatorcontrib>Barker, William Kyle</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barker, William Kyle</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Traveling Wave for a diffusive SIR model with delay in diffusion term</atitle><jtitle>arXiv.org</jtitle><date>2023-10-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper is concerned with traveling waves to an diffusive SIR model with delay placed in the diffusion terms as well as nonlinear incidence rate with delay. Using a cross iteration scheme and partial monotone conditions it will be shown that the existence of quasi upper and lower solutions is a sufficient condition for the existence of a traveling wave front. This will be shown via Schauder's fixed point theorem. Given an appropriate basic reproduction number the traveling wave front will flow from a disease-free steady state to endemic steady state. The construction of quasi upper and lower solutions will be carried out for a specific model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2881056835 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Delay Diffusion rate Fixed points (mathematics) Iterative methods Steady state Traveling waves Wave fronts |
title | Traveling Wave for a diffusive SIR model with delay in diffusion term |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Traveling%20Wave%20for%20a%20diffusive%20SIR%20model%20with%20delay%20in%20diffusion%20term&rft.jtitle=arXiv.org&rft.au=Barker,%20William%20Kyle&rft.date=2023-10-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2881056835%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881056835&rft_id=info:pmid/&rfr_iscdi=true |