High-dimensional multi-fidelity Bayesian optimization for quantum control
We present the first multi-fidelity Bayesian optimization (BO) approach for solving inverse problems in the quantum control of prototypical quantum systems. Our approach automatically constructs time-dependent control fields that enable transitions between initial and desired final quantum states. M...
Gespeichert in:
Veröffentlicht in: | Machine learning: science and technology 2023-12, Vol.4 (4), p.45014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the first multi-fidelity Bayesian optimization (BO) approach for solving inverse problems in the quantum control of prototypical quantum systems. Our approach automatically constructs time-dependent control fields that enable transitions between initial and desired final quantum states. Most importantly, our BO approach gives impressive performance in constructing time-dependent control fields, even for cases that are difficult to converge with existing gradient-based approaches. We provide detailed descriptions of our machine learning methods as well as performance metrics for a variety of machine learning algorithms. Taken together, our results demonstrate that BO is a promising approach to efficiently and autonomously design control fields in general quantum dynamical systems. |
---|---|
ISSN: | 2632-2153 2632-2153 |
DOI: | 10.1088/2632-2153/ad0100 |