Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors
In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank an...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2023-10, Vol.39 (10), p.2031-2053 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2053 |
---|---|
container_issue | 10 |
container_start_page | 2031 |
container_title | Acta mathematica Sinica. English series |
container_volume | 39 |
creator | Peng, Ling Tan, Xiang Yong Xiao, Pei Wen Rizk, Zeinab Liu, Xiao Hui |
description | In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank and elements-wise sparse, we estimate the parameter matrix through the least-squares approach with the composite penalty combining the nuclear norm and the
l
1
norm. We extend the existing analysis of the low-rank trace regression with i.i.d. errors to exponential
β
-mixing errors. The explicit convergence rate and the asymptotic properties of the proposed estimator are established. Simulations, as well as a real data application, are also carried out for illustration. |
doi_str_mv | 10.1007/s10114-023-2153-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2880841314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2880841314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7f7f23732c477cd9fc84f0a86f197d906fc8553d6ef1b967ae1af09122091c1c3</originalsourceid><addsrcrecordid>eNp1UMFOwzAMjRBIjMIHcIvEORAnbdMe0TRg0tAkGFyjkCajU9d0SSe23-JD-CYydRInLrZlv_dsP4Sugd4CpeIuAAVICWWcMMg44SdoBCkvichBnB7rIoP8HF2EsKI0y0qaj9D73CvdGDxtzWarmrrfY-s8fu2UDwYv4tDgF7P0JoTatfjZVaYJ-KvuP_Fk17nWtH2tGvzzTdb1rm6XeOK98-ESnVnVBHN1zAl6e5gsxk9kNn-cju9nRHPIeyKssIwLznQqhK5Kq4vUUlXkFkpRxQNjI8t4lRsLH2UulAFlaQmMxaBB8wTdDLqdd5utCb1cua1v40rJioIWKfD4eYJgQGnvQvDGys7Xa-X3Eqg82CcH-2S0Tx7skzxy2MAJEdsujf9T_p_0C5_Gcvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880841314</pqid></control><display><type>article</type><title>Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Peng, Ling ; Tan, Xiang Yong ; Xiao, Pei Wen ; Rizk, Zeinab ; Liu, Xiao Hui</creator><creatorcontrib>Peng, Ling ; Tan, Xiang Yong ; Xiao, Pei Wen ; Rizk, Zeinab ; Liu, Xiao Hui</creatorcontrib><description>In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank and elements-wise sparse, we estimate the parameter matrix through the least-squares approach with the composite penalty combining the nuclear norm and the
l
1
norm. We extend the existing analysis of the low-rank trace regression with i.i.d. errors to exponential
β
-mixing errors. The explicit convergence rate and the asymptotic properties of the proposed estimator are established. Simulations, as well as a real data application, are also carried out for illustration.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-023-2153-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Errors ; Mathematics ; Mathematics and Statistics ; Parameters ; Regression models</subject><ispartof>Acta mathematica Sinica. English series, 2023-10, Vol.39 (10), p.2031-2053</ispartof><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2023</rights><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7f7f23732c477cd9fc84f0a86f197d906fc8553d6ef1b967ae1af09122091c1c3</citedby><cites>FETCH-LOGICAL-c316t-7f7f23732c477cd9fc84f0a86f197d906fc8553d6ef1b967ae1af09122091c1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-023-2153-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-023-2153-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Peng, Ling</creatorcontrib><creatorcontrib>Tan, Xiang Yong</creatorcontrib><creatorcontrib>Xiao, Pei Wen</creatorcontrib><creatorcontrib>Rizk, Zeinab</creatorcontrib><creatorcontrib>Liu, Xiao Hui</creatorcontrib><title>Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank and elements-wise sparse, we estimate the parameter matrix through the least-squares approach with the composite penalty combining the nuclear norm and the
l
1
norm. We extend the existing analysis of the low-rank trace regression with i.i.d. errors to exponential
β
-mixing errors. The explicit convergence rate and the asymptotic properties of the proposed estimator are established. Simulations, as well as a real data application, are also carried out for illustration.</description><subject>Asymptotic properties</subject><subject>Errors</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><subject>Regression models</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMFOwzAMjRBIjMIHcIvEORAnbdMe0TRg0tAkGFyjkCajU9d0SSe23-JD-CYydRInLrZlv_dsP4Sugd4CpeIuAAVICWWcMMg44SdoBCkvichBnB7rIoP8HF2EsKI0y0qaj9D73CvdGDxtzWarmrrfY-s8fu2UDwYv4tDgF7P0JoTatfjZVaYJ-KvuP_Fk17nWtH2tGvzzTdb1rm6XeOK98-ESnVnVBHN1zAl6e5gsxk9kNn-cju9nRHPIeyKssIwLznQqhK5Kq4vUUlXkFkpRxQNjI8t4lRsLH2UulAFlaQmMxaBB8wTdDLqdd5utCb1cua1v40rJioIWKfD4eYJgQGnvQvDGys7Xa-X3Eqg82CcH-2S0Tx7skzxy2MAJEdsujf9T_p_0C5_Gcvo</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Peng, Ling</creator><creator>Tan, Xiang Yong</creator><creator>Xiao, Pei Wen</creator><creator>Rizk, Zeinab</creator><creator>Liu, Xiao Hui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231001</creationdate><title>Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors</title><author>Peng, Ling ; Tan, Xiang Yong ; Xiao, Pei Wen ; Rizk, Zeinab ; Liu, Xiao Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7f7f23732c477cd9fc84f0a86f197d906fc8553d6ef1b967ae1af09122091c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Errors</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Ling</creatorcontrib><creatorcontrib>Tan, Xiang Yong</creatorcontrib><creatorcontrib>Xiao, Pei Wen</creatorcontrib><creatorcontrib>Rizk, Zeinab</creatorcontrib><creatorcontrib>Liu, Xiao Hui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Ling</au><au>Tan, Xiang Yong</au><au>Xiao, Pei Wen</au><au>Rizk, Zeinab</au><au>Liu, Xiao Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>39</volume><issue>10</issue><spage>2031</spage><epage>2053</epage><pages>2031-2053</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank and elements-wise sparse, we estimate the parameter matrix through the least-squares approach with the composite penalty combining the nuclear norm and the
l
1
norm. We extend the existing analysis of the low-rank trace regression with i.i.d. errors to exponential
β
-mixing errors. The explicit convergence rate and the asymptotic properties of the proposed estimator are established. Simulations, as well as a real data application, are also carried out for illustration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10114-023-2153-3</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2023-10, Vol.39 (10), p.2031-2053 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_journals_2880841314 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Asymptotic properties Errors Mathematics Mathematics and Statistics Parameters Regression models |
title | Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oracle%20Inequality%20for%20Sparse%20Trace%20Regression%20Models%20with%20Exponential%20%CE%B2-mixing%20Errors&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Peng,%20Ling&rft.date=2023-10-01&rft.volume=39&rft.issue=10&rft.spage=2031&rft.epage=2053&rft.pages=2031-2053&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-023-2153-3&rft_dat=%3Cproquest_cross%3E2880841314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2880841314&rft_id=info:pmid/&rfr_iscdi=true |