Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors

In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2023-10, Vol.39 (10), p.2031-2053
Hauptverfasser: Peng, Ling, Tan, Xiang Yong, Xiao, Pei Wen, Rizk, Zeinab, Liu, Xiao Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2053
container_issue 10
container_start_page 2031
container_title Acta mathematica Sinica. English series
container_volume 39
creator Peng, Ling
Tan, Xiang Yong
Xiao, Pei Wen
Rizk, Zeinab
Liu, Xiao Hui
description In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank and elements-wise sparse, we estimate the parameter matrix through the least-squares approach with the composite penalty combining the nuclear norm and the l 1 norm. We extend the existing analysis of the low-rank trace regression with i.i.d. errors to exponential β -mixing errors. The explicit convergence rate and the asymptotic properties of the proposed estimator are established. Simulations, as well as a real data application, are also carried out for illustration.
doi_str_mv 10.1007/s10114-023-2153-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2880841314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2880841314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7f7f23732c477cd9fc84f0a86f197d906fc8553d6ef1b967ae1af09122091c1c3</originalsourceid><addsrcrecordid>eNp1UMFOwzAMjRBIjMIHcIvEORAnbdMe0TRg0tAkGFyjkCajU9d0SSe23-JD-CYydRInLrZlv_dsP4Sugd4CpeIuAAVICWWcMMg44SdoBCkvichBnB7rIoP8HF2EsKI0y0qaj9D73CvdGDxtzWarmrrfY-s8fu2UDwYv4tDgF7P0JoTatfjZVaYJ-KvuP_Fk17nWtH2tGvzzTdb1rm6XeOK98-ESnVnVBHN1zAl6e5gsxk9kNn-cju9nRHPIeyKssIwLznQqhK5Kq4vUUlXkFkpRxQNjI8t4lRsLH2UulAFlaQmMxaBB8wTdDLqdd5utCb1cua1v40rJioIWKfD4eYJgQGnvQvDGys7Xa-X3Eqg82CcH-2S0Tx7skzxy2MAJEdsujf9T_p_0C5_Gcvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880841314</pqid></control><display><type>article</type><title>Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Peng, Ling ; Tan, Xiang Yong ; Xiao, Pei Wen ; Rizk, Zeinab ; Liu, Xiao Hui</creator><creatorcontrib>Peng, Ling ; Tan, Xiang Yong ; Xiao, Pei Wen ; Rizk, Zeinab ; Liu, Xiao Hui</creatorcontrib><description>In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank and elements-wise sparse, we estimate the parameter matrix through the least-squares approach with the composite penalty combining the nuclear norm and the l 1 norm. We extend the existing analysis of the low-rank trace regression with i.i.d. errors to exponential β -mixing errors. The explicit convergence rate and the asymptotic properties of the proposed estimator are established. Simulations, as well as a real data application, are also carried out for illustration.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-023-2153-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Errors ; Mathematics ; Mathematics and Statistics ; Parameters ; Regression models</subject><ispartof>Acta mathematica Sinica. English series, 2023-10, Vol.39 (10), p.2031-2053</ispartof><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2023</rights><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7f7f23732c477cd9fc84f0a86f197d906fc8553d6ef1b967ae1af09122091c1c3</citedby><cites>FETCH-LOGICAL-c316t-7f7f23732c477cd9fc84f0a86f197d906fc8553d6ef1b967ae1af09122091c1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-023-2153-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-023-2153-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Peng, Ling</creatorcontrib><creatorcontrib>Tan, Xiang Yong</creatorcontrib><creatorcontrib>Xiao, Pei Wen</creatorcontrib><creatorcontrib>Rizk, Zeinab</creatorcontrib><creatorcontrib>Liu, Xiao Hui</creatorcontrib><title>Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank and elements-wise sparse, we estimate the parameter matrix through the least-squares approach with the composite penalty combining the nuclear norm and the l 1 norm. We extend the existing analysis of the low-rank trace regression with i.i.d. errors to exponential β -mixing errors. The explicit convergence rate and the asymptotic properties of the proposed estimator are established. Simulations, as well as a real data application, are also carried out for illustration.</description><subject>Asymptotic properties</subject><subject>Errors</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><subject>Regression models</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMFOwzAMjRBIjMIHcIvEORAnbdMe0TRg0tAkGFyjkCajU9d0SSe23-JD-CYydRInLrZlv_dsP4Sugd4CpeIuAAVICWWcMMg44SdoBCkvichBnB7rIoP8HF2EsKI0y0qaj9D73CvdGDxtzWarmrrfY-s8fu2UDwYv4tDgF7P0JoTatfjZVaYJ-KvuP_Fk17nWtH2tGvzzTdb1rm6XeOK98-ESnVnVBHN1zAl6e5gsxk9kNn-cju9nRHPIeyKssIwLznQqhK5Kq4vUUlXkFkpRxQNjI8t4lRsLH2UulAFlaQmMxaBB8wTdDLqdd5utCb1cua1v40rJioIWKfD4eYJgQGnvQvDGys7Xa-X3Eqg82CcH-2S0Tx7skzxy2MAJEdsujf9T_p_0C5_Gcvo</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Peng, Ling</creator><creator>Tan, Xiang Yong</creator><creator>Xiao, Pei Wen</creator><creator>Rizk, Zeinab</creator><creator>Liu, Xiao Hui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231001</creationdate><title>Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors</title><author>Peng, Ling ; Tan, Xiang Yong ; Xiao, Pei Wen ; Rizk, Zeinab ; Liu, Xiao Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7f7f23732c477cd9fc84f0a86f197d906fc8553d6ef1b967ae1af09122091c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Errors</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Ling</creatorcontrib><creatorcontrib>Tan, Xiang Yong</creatorcontrib><creatorcontrib>Xiao, Pei Wen</creatorcontrib><creatorcontrib>Rizk, Zeinab</creatorcontrib><creatorcontrib>Liu, Xiao Hui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Ling</au><au>Tan, Xiang Yong</au><au>Xiao, Pei Wen</au><au>Rizk, Zeinab</au><au>Liu, Xiao Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>39</volume><issue>10</issue><spage>2031</spage><epage>2053</epage><pages>2031-2053</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank and elements-wise sparse, we estimate the parameter matrix through the least-squares approach with the composite penalty combining the nuclear norm and the l 1 norm. We extend the existing analysis of the low-rank trace regression with i.i.d. errors to exponential β -mixing errors. The explicit convergence rate and the asymptotic properties of the proposed estimator are established. Simulations, as well as a real data application, are also carried out for illustration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10114-023-2153-3</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2023-10, Vol.39 (10), p.2031-2053
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_2880841314
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Errors
Mathematics
Mathematics and Statistics
Parameters
Regression models
title Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oracle%20Inequality%20for%20Sparse%20Trace%20Regression%20Models%20with%20Exponential%20%CE%B2-mixing%20Errors&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Peng,%20Ling&rft.date=2023-10-01&rft.volume=39&rft.issue=10&rft.spage=2031&rft.epage=2053&rft.pages=2031-2053&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-023-2153-3&rft_dat=%3Cproquest_cross%3E2880841314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2880841314&rft_id=info:pmid/&rfr_iscdi=true