Oracle Inequality for Sparse Trace Regression Models with Exponential β-mixing Errors

In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2023-10, Vol.39 (10), p.2031-2053
Hauptverfasser: Peng, Ling, Tan, Xiang Yong, Xiao, Pei Wen, Rizk, Zeinab, Liu, Xiao Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In applications involving, e.g., panel data, images, genomics microarrays, etc., trace regression models are useful tools. To address the high-dimensional issue of these applications, it is common to assume some sparsity property. For the case of the parameter matrix being simultaneously low rank and elements-wise sparse, we estimate the parameter matrix through the least-squares approach with the composite penalty combining the nuclear norm and the l 1 norm. We extend the existing analysis of the low-rank trace regression with i.i.d. errors to exponential β -mixing errors. The explicit convergence rate and the asymptotic properties of the proposed estimator are established. Simulations, as well as a real data application, are also carried out for illustration.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-023-2153-3