Counting Divisors in the Outputs of a Binary Quadratic Form
For a fixed natural number \(h\), we prove meromorphic continuation of the two-variable Dirichlet series \(\sum_m r_2(m) \sigma_w(m + h) (m + h)^{-s + w}\) to \(\mathbb{C}^2\) and use this to obtain asymptotics for \(\sum_{m^2 + n^2 \leq X} \sigma_w(m^2 + n^2 + h)\). We approach this continuation th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a fixed natural number \(h\), we prove meromorphic continuation of the two-variable Dirichlet series \(\sum_m r_2(m) \sigma_w(m + h) (m + h)^{-s + w}\) to \(\mathbb{C}^2\) and use this to obtain asymptotics for \(\sum_{m^2 + n^2 \leq X} \sigma_w(m^2 + n^2 + h)\). We approach this continuation through spectral theory. Our results are comparable to earlier work of Bykovskii, who used different methods to study the sums \(\sum_{n^2 \leq X} \sigma_w(n^2 + h)\). |
---|---|
ISSN: | 2331-8422 |