Detecting Shared Data Manipulation in Distributed Optimization Algorithms
This paper investigates the vulnerability of the Alternating Direction Method of Multipliers (ADMM) algorithm to shared data manipulation, with a focus on solving optimal power flow (OPF) problems. Deliberate data manipulation may cause the ADMM algorithm to converge to suboptimal solutions. We deri...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alkhraijah, Mohannad Harris, Rachel Litchfield, Samuel Huggins, David Molzahn, Daniel K |
description | This paper investigates the vulnerability of the Alternating Direction Method of Multipliers (ADMM) algorithm to shared data manipulation, with a focus on solving optimal power flow (OPF) problems. Deliberate data manipulation may cause the ADMM algorithm to converge to suboptimal solutions. We derive two sufficient conditions for detecting data manipulation based on the theoretical convergence trajectory of the ADMM algorithm. We evaluate the detection conditions' performance on three data manipulation strategies we previously proposed: simple, feedback, and bilevel optimization attacks. We then extend these three data manipulation strategies to avoid detection by considering both the detection conditions and a neural network (NN) detection model in the attacks. We also propose an adversarial NN training framework to detect shared data manipulation. We illustrate the performance of our data manipulation strategy and detection framework on OPF problems. The results show that the proposed detection conditions successfully detect most of the data manipulation attacks. However, a bilevel optimization attack strategy that incorporates the detection methods may avoid being detected. Countering this, our proposed adversarial training framework detects all the instances of the bilevel optimization attack. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2880584832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2880584832</sourcerecordid><originalsourceid>FETCH-proquest_journals_28805848323</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC_Gl1axiFR3EQfcSNbavtElNXha_XkE_wOkO545YAlIuMpUDTFgaQiuEgOUKikIm7FAaMjdCW_Nzo72581KT5kdtcYidJnSWo-UlBvJ4jfQZTgNhj6-vrbvaeaSmDzM2fugumPTXKZvvtpfNPhu8e0YTqGpd9PZDFSglCpUrCfK_6w2s0zzi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880584832</pqid></control><display><type>article</type><title>Detecting Shared Data Manipulation in Distributed Optimization Algorithms</title><source>Free E- Journals</source><creator>Alkhraijah, Mohannad ; Harris, Rachel ; Litchfield, Samuel ; Huggins, David ; Molzahn, Daniel K</creator><creatorcontrib>Alkhraijah, Mohannad ; Harris, Rachel ; Litchfield, Samuel ; Huggins, David ; Molzahn, Daniel K</creatorcontrib><description>This paper investigates the vulnerability of the Alternating Direction Method of Multipliers (ADMM) algorithm to shared data manipulation, with a focus on solving optimal power flow (OPF) problems. Deliberate data manipulation may cause the ADMM algorithm to converge to suboptimal solutions. We derive two sufficient conditions for detecting data manipulation based on the theoretical convergence trajectory of the ADMM algorithm. We evaluate the detection conditions' performance on three data manipulation strategies we previously proposed: simple, feedback, and bilevel optimization attacks. We then extend these three data manipulation strategies to avoid detection by considering both the detection conditions and a neural network (NN) detection model in the attacks. We also propose an adversarial NN training framework to detect shared data manipulation. We illustrate the performance of our data manipulation strategy and detection framework on OPF problems. The results show that the proposed detection conditions successfully detect most of the data manipulation attacks. However, a bilevel optimization attack strategy that incorporates the detection methods may avoid being detected. Countering this, our proposed adversarial training framework detects all the instances of the bilevel optimization attack.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convergence ; Neural networks ; Optimization ; Power flow ; Training</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alkhraijah, Mohannad</creatorcontrib><creatorcontrib>Harris, Rachel</creatorcontrib><creatorcontrib>Litchfield, Samuel</creatorcontrib><creatorcontrib>Huggins, David</creatorcontrib><creatorcontrib>Molzahn, Daniel K</creatorcontrib><title>Detecting Shared Data Manipulation in Distributed Optimization Algorithms</title><title>arXiv.org</title><description>This paper investigates the vulnerability of the Alternating Direction Method of Multipliers (ADMM) algorithm to shared data manipulation, with a focus on solving optimal power flow (OPF) problems. Deliberate data manipulation may cause the ADMM algorithm to converge to suboptimal solutions. We derive two sufficient conditions for detecting data manipulation based on the theoretical convergence trajectory of the ADMM algorithm. We evaluate the detection conditions' performance on three data manipulation strategies we previously proposed: simple, feedback, and bilevel optimization attacks. We then extend these three data manipulation strategies to avoid detection by considering both the detection conditions and a neural network (NN) detection model in the attacks. We also propose an adversarial NN training framework to detect shared data manipulation. We illustrate the performance of our data manipulation strategy and detection framework on OPF problems. The results show that the proposed detection conditions successfully detect most of the data manipulation attacks. However, a bilevel optimization attack strategy that incorporates the detection methods may avoid being detected. Countering this, our proposed adversarial training framework detects all the instances of the bilevel optimization attack.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Power flow</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC_Gl1axiFR3EQfcSNbavtElNXha_XkE_wOkO545YAlIuMpUDTFgaQiuEgOUKikIm7FAaMjdCW_Nzo72581KT5kdtcYidJnSWo-UlBvJ4jfQZTgNhj6-vrbvaeaSmDzM2fugumPTXKZvvtpfNPhu8e0YTqGpd9PZDFSglCpUrCfK_6w2s0zzi</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Alkhraijah, Mohannad</creator><creator>Harris, Rachel</creator><creator>Litchfield, Samuel</creator><creator>Huggins, David</creator><creator>Molzahn, Daniel K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231020</creationdate><title>Detecting Shared Data Manipulation in Distributed Optimization Algorithms</title><author>Alkhraijah, Mohannad ; Harris, Rachel ; Litchfield, Samuel ; Huggins, David ; Molzahn, Daniel K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28805848323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Power flow</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Alkhraijah, Mohannad</creatorcontrib><creatorcontrib>Harris, Rachel</creatorcontrib><creatorcontrib>Litchfield, Samuel</creatorcontrib><creatorcontrib>Huggins, David</creatorcontrib><creatorcontrib>Molzahn, Daniel K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkhraijah, Mohannad</au><au>Harris, Rachel</au><au>Litchfield, Samuel</au><au>Huggins, David</au><au>Molzahn, Daniel K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Detecting Shared Data Manipulation in Distributed Optimization Algorithms</atitle><jtitle>arXiv.org</jtitle><date>2023-10-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper investigates the vulnerability of the Alternating Direction Method of Multipliers (ADMM) algorithm to shared data manipulation, with a focus on solving optimal power flow (OPF) problems. Deliberate data manipulation may cause the ADMM algorithm to converge to suboptimal solutions. We derive two sufficient conditions for detecting data manipulation based on the theoretical convergence trajectory of the ADMM algorithm. We evaluate the detection conditions' performance on three data manipulation strategies we previously proposed: simple, feedback, and bilevel optimization attacks. We then extend these three data manipulation strategies to avoid detection by considering both the detection conditions and a neural network (NN) detection model in the attacks. We also propose an adversarial NN training framework to detect shared data manipulation. We illustrate the performance of our data manipulation strategy and detection framework on OPF problems. The results show that the proposed detection conditions successfully detect most of the data manipulation attacks. However, a bilevel optimization attack strategy that incorporates the detection methods may avoid being detected. Countering this, our proposed adversarial training framework detects all the instances of the bilevel optimization attack.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2880584832 |
source | Free E- Journals |
subjects | Algorithms Convergence Neural networks Optimization Power flow Training |
title | Detecting Shared Data Manipulation in Distributed Optimization Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Detecting%20Shared%20Data%20Manipulation%20in%20Distributed%20Optimization%20Algorithms&rft.jtitle=arXiv.org&rft.au=Alkhraijah,%20Mohannad&rft.date=2023-10-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2880584832%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2880584832&rft_id=info:pmid/&rfr_iscdi=true |