On flag-no-square \(4\)-manifolds
Which \(4\)-manifolds admit a flag-no-square (fns) triangulation? We introduce the "star-connected-sum" operation on such triangulations, which preserves the fns property, from which we derive new constructions of fns \(4\)-manifolds. In particular, we show the following: (i) there exist n...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Which \(4\)-manifolds admit a flag-no-square (fns) triangulation? We introduce the "star-connected-sum" operation on such triangulations, which preserves the fns property, from which we derive new constructions of fns \(4\)-manifolds. In particular, we show the following: (i) there exist non-aspherical fns \(4\)-manifolds, answering in the negative a question by Przytycki and Swiatkowski; (ii) for every large enough integer \(k\) there exists a fns \(4\)-manifold \(M_{2k}\) of Euler characteristic \(2k\), and further, (iii) \(M_{2k}\) admits a super-exponential number (in \(k\)) of fns triangulations - at least \(2^{\Omega(k \log k)}\) and at most \(2^{O(k^{1.5} \log k)}\). |
---|---|
ISSN: | 2331-8422 |