State estimation in mechanical systems of fractional-order based on a family of proportional ρ-integral observers
In control theory, there are many proposals to solve the problem of observer design. This paper studies the Mittag-Leffler stability of a class of dynamic observers for nonlinear fractional-order systems, given in the observable canonical form and defined by the Caputo fractional derivative. We prov...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2023-11, Vol.111 (21), p.19879-19899 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19899 |
---|---|
container_issue | 21 |
container_start_page | 19879 |
container_title | Nonlinear dynamics |
container_volume | 111 |
creator | Martínez-Fuentes, Oscar Muñoz-Vázquez, Aldo Jonathan Fernández-Anaya, Guillermo Tlelo-Cuautle, Esteban |
description | In control theory, there are many proposals to solve the problem of observer design. This paper studies the Mittag-Leffler stability of a class of dynamic observers for nonlinear fractional-order systems, given in the observable canonical form and defined by the Caputo fractional derivative. We prove that the Riemann–Liouville integral could be employed to provide robustness against noisy measurements during the estimation problem. Based on this advantage, the main result of this paper consists of the design of a family of high-gain proportional
ρ
-integral observers employed to estimate unmeasured state variables of nonlinear fractional systems of commensurate order. Three illustrative numerical examples of mechanical systems are provided, which corroborate the effectiveness of the proposed algorithms. |
doi_str_mv | 10.1007/s11071-023-08919-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2880579679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2880579679</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-3536e7852ead44c05391b7bd29612a086e42aee738dd6a14dde00c3705ccbd1e3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK7-AU8Bz9FJ0jbJURa_YMGDCnsLaTNdu_TLpCvs0V_oX7K1gqeZw_MO7zyEXHK45gDqJnIOijMQkoE23LDkiCx4qiQTmdkckwUYkTAwsDklZzHuAEAK0AsSXgY3IMU4VI0bqq6lVUsbLN5dWxWupvEQB2wi7UpaBldMhKtZFzwGmruIno4RR0vXVPVhovrQ9V2YOfr9xap2wG0Y9y6PGD4xxHNyUro64sXfXJK3-7vX1SNbPz88rW7XrBdCDUymMkOlU4HOJ0kBqTQ8V7kXJuPCgc4wEQ5RSe195njiPQIUUkFaFLnnKJfkar47VvrYjx_aXbcPY61ohdaQKpMpM1JypmIfqnaL4Z_iYCe5dpZrR7n2V65N5A-5zW-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880579679</pqid></control><display><type>article</type><title>State estimation in mechanical systems of fractional-order based on a family of proportional ρ-integral observers</title><source>SpringerLink Journals</source><creator>Martínez-Fuentes, Oscar ; Muñoz-Vázquez, Aldo Jonathan ; Fernández-Anaya, Guillermo ; Tlelo-Cuautle, Esteban</creator><creatorcontrib>Martínez-Fuentes, Oscar ; Muñoz-Vázquez, Aldo Jonathan ; Fernández-Anaya, Guillermo ; Tlelo-Cuautle, Esteban</creatorcontrib><description>In control theory, there are many proposals to solve the problem of observer design. This paper studies the Mittag-Leffler stability of a class of dynamic observers for nonlinear fractional-order systems, given in the observable canonical form and defined by the Caputo fractional derivative. We prove that the Riemann–Liouville integral could be employed to provide robustness against noisy measurements during the estimation problem. Based on this advantage, the main result of this paper consists of the design of a family of high-gain proportional
ρ
-integral observers employed to estimate unmeasured state variables of nonlinear fractional systems of commensurate order. Three illustrative numerical examples of mechanical systems are provided, which corroborate the effectiveness of the proposed algorithms.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-023-08919-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Canonical forms ; Classical Mechanics ; Control ; Control theory ; Derivatives ; Design ; Dynamic stability ; Dynamical Systems ; Engineering ; High gain ; Integrals ; Mechanical Engineering ; Mechanical systems ; Nonlinear systems ; Observers ; Original Paper ; Robustness (mathematics) ; State estimation ; System effectiveness ; Variables ; Vibration</subject><ispartof>Nonlinear dynamics, 2023-11, Vol.111 (21), p.19879-19899</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9447-6592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-023-08919-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-023-08919-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Martínez-Fuentes, Oscar</creatorcontrib><creatorcontrib>Muñoz-Vázquez, Aldo Jonathan</creatorcontrib><creatorcontrib>Fernández-Anaya, Guillermo</creatorcontrib><creatorcontrib>Tlelo-Cuautle, Esteban</creatorcontrib><title>State estimation in mechanical systems of fractional-order based on a family of proportional ρ-integral observers</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In control theory, there are many proposals to solve the problem of observer design. This paper studies the Mittag-Leffler stability of a class of dynamic observers for nonlinear fractional-order systems, given in the observable canonical form and defined by the Caputo fractional derivative. We prove that the Riemann–Liouville integral could be employed to provide robustness against noisy measurements during the estimation problem. Based on this advantage, the main result of this paper consists of the design of a family of high-gain proportional
ρ
-integral observers employed to estimate unmeasured state variables of nonlinear fractional systems of commensurate order. Three illustrative numerical examples of mechanical systems are provided, which corroborate the effectiveness of the proposed algorithms.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Canonical forms</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control theory</subject><subject>Derivatives</subject><subject>Design</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>High gain</subject><subject>Integrals</subject><subject>Mechanical Engineering</subject><subject>Mechanical systems</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>Original Paper</subject><subject>Robustness (mathematics)</subject><subject>State estimation</subject><subject>System effectiveness</subject><subject>Variables</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkE1LxDAQhoMouK7-AU8Bz9FJ0jbJURa_YMGDCnsLaTNdu_TLpCvs0V_oX7K1gqeZw_MO7zyEXHK45gDqJnIOijMQkoE23LDkiCx4qiQTmdkckwUYkTAwsDklZzHuAEAK0AsSXgY3IMU4VI0bqq6lVUsbLN5dWxWupvEQB2wi7UpaBldMhKtZFzwGmruIno4RR0vXVPVhovrQ9V2YOfr9xap2wG0Y9y6PGD4xxHNyUro64sXfXJK3-7vX1SNbPz88rW7XrBdCDUymMkOlU4HOJ0kBqTQ8V7kXJuPCgc4wEQ5RSe195njiPQIUUkFaFLnnKJfkar47VvrYjx_aXbcPY61ohdaQKpMpM1JypmIfqnaL4Z_iYCe5dpZrR7n2V65N5A-5zW-8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Martínez-Fuentes, Oscar</creator><creator>Muñoz-Vázquez, Aldo Jonathan</creator><creator>Fernández-Anaya, Guillermo</creator><creator>Tlelo-Cuautle, Esteban</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9447-6592</orcidid></search><sort><creationdate>20231101</creationdate><title>State estimation in mechanical systems of fractional-order based on a family of proportional ρ-integral observers</title><author>Martínez-Fuentes, Oscar ; Muñoz-Vázquez, Aldo Jonathan ; Fernández-Anaya, Guillermo ; Tlelo-Cuautle, Esteban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-3536e7852ead44c05391b7bd29612a086e42aee738dd6a14dde00c3705ccbd1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Canonical forms</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control theory</topic><topic>Derivatives</topic><topic>Design</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>High gain</topic><topic>Integrals</topic><topic>Mechanical Engineering</topic><topic>Mechanical systems</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>Original Paper</topic><topic>Robustness (mathematics)</topic><topic>State estimation</topic><topic>System effectiveness</topic><topic>Variables</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Fuentes, Oscar</creatorcontrib><creatorcontrib>Muñoz-Vázquez, Aldo Jonathan</creatorcontrib><creatorcontrib>Fernández-Anaya, Guillermo</creatorcontrib><creatorcontrib>Tlelo-Cuautle, Esteban</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Fuentes, Oscar</au><au>Muñoz-Vázquez, Aldo Jonathan</au><au>Fernández-Anaya, Guillermo</au><au>Tlelo-Cuautle, Esteban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State estimation in mechanical systems of fractional-order based on a family of proportional ρ-integral observers</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>111</volume><issue>21</issue><spage>19879</spage><epage>19899</epage><pages>19879-19899</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In control theory, there are many proposals to solve the problem of observer design. This paper studies the Mittag-Leffler stability of a class of dynamic observers for nonlinear fractional-order systems, given in the observable canonical form and defined by the Caputo fractional derivative. We prove that the Riemann–Liouville integral could be employed to provide robustness against noisy measurements during the estimation problem. Based on this advantage, the main result of this paper consists of the design of a family of high-gain proportional
ρ
-integral observers employed to estimate unmeasured state variables of nonlinear fractional systems of commensurate order. Three illustrative numerical examples of mechanical systems are provided, which corroborate the effectiveness of the proposed algorithms.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-023-08919-4</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9447-6592</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2023-11, Vol.111 (21), p.19879-19899 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2880579679 |
source | SpringerLink Journals |
subjects | Algorithms Automotive Engineering Canonical forms Classical Mechanics Control Control theory Derivatives Design Dynamic stability Dynamical Systems Engineering High gain Integrals Mechanical Engineering Mechanical systems Nonlinear systems Observers Original Paper Robustness (mathematics) State estimation System effectiveness Variables Vibration |
title | State estimation in mechanical systems of fractional-order based on a family of proportional ρ-integral observers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20estimation%20in%20mechanical%20systems%20of%20fractional-order%20based%20on%20a%20family%20of%20proportional%20%CF%81-integral%20observers&rft.jtitle=Nonlinear%20dynamics&rft.au=Mart%C3%ADnez-Fuentes,%20Oscar&rft.date=2023-11-01&rft.volume=111&rft.issue=21&rft.spage=19879&rft.epage=19899&rft.pages=19879-19899&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-023-08919-4&rft_dat=%3Cproquest_sprin%3E2880579679%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2880579679&rft_id=info:pmid/&rfr_iscdi=true |