Edge-driven collapse of fluid holes

We study the stability and collapse of holes at the wall in liquid layers on circular bounded containers with various wettabilities. Three distinct wetting modes of the hole are observed, which are related to the wettability of the container: when the substrate and the inner wall of the container ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-10, Vol.973, Article A18
Hauptverfasser: Zhao, Huanlei, Zhang, Bin, Lv, Cunjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 973
creator Zhao, Huanlei
Zhang, Bin
Lv, Cunjing
description We study the stability and collapse of holes at the wall in liquid layers on circular bounded containers with various wettabilities. Three distinct wetting modes of the hole are observed, which are related to the wettability of the container: when the substrate and the inner wall of the container are superhydrophobic, a stable hole remains as the liquid volume is continuously increased until the liquid layer covers the entire substrate; when the substrate and the inner wall are hydrophobic, an eye-shaped hole remains stable as the projected area of the hole exceeds a critical value $A_c$, however, the hole collapses if the liquid volume is further increased; when the substrate is superhydrophobic but the wall is hydrophilic, on increasing the liquid volume, the hole suddenly transfers into a circular hole and is pushed against the wall, leaving the hole dwelling around the centre of the container. Theoretical analyses and numerical simulations are conducted to establish the phase diagram for different wetting modes. It is found that, in the second mode, $A_c$ increases with the size of the container but decreases with the contact angle of the substrate and the wall. Furthermore, we experimentally investigate the dynamics of the hole. The time evolution of the area of the hole obeys a scaling relationship $A \sim (t_0 - t)^{1.1}$ after the hole collapses at time $t_0$.
doi_str_mv 10.1017/jfm.2023.753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879958947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_753</cupid><sourcerecordid>2879958947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-2fccaead4ee8a01938f86ee84e2c391c6eb19a83d9b93d3e2e0be0436e4cd6b43</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK7e_AGFvdo6-WibHGVZP2DBi55Dmky0pd3WZCv4782yC148zRye9x3mIeSWQkGB1vedHwoGjBd1yc_IgopK5XUlynOyAGAsp5TBJbmKsQOgHFS9IKuN-8DchfYbd5kd-95MEbPRZ76fW5d9jj3Ga3LhTR_x5jSX5P1x87Z-zrevTy_rh21uWan2OfPWGjROIEoDVHHpZZV2gcxyRW2FDVVGcqcaxR1HhtAgCF6hsK5qBF-S1bF3CuPXjHGvu3EOu3RSM1krVUol6kTdHSkbxhgDej2FdjDhR1PQBw06adAHDTppSHhxws3QhDZ9-9f6b-AXML1eXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879958947</pqid></control><display><type>article</type><title>Edge-driven collapse of fluid holes</title><source>Cambridge University Press Journals Complete</source><creator>Zhao, Huanlei ; Zhang, Bin ; Lv, Cunjing</creator><creatorcontrib>Zhao, Huanlei ; Zhang, Bin ; Lv, Cunjing</creatorcontrib><description>We study the stability and collapse of holes at the wall in liquid layers on circular bounded containers with various wettabilities. Three distinct wetting modes of the hole are observed, which are related to the wettability of the container: when the substrate and the inner wall of the container are superhydrophobic, a stable hole remains as the liquid volume is continuously increased until the liquid layer covers the entire substrate; when the substrate and the inner wall are hydrophobic, an eye-shaped hole remains stable as the projected area of the hole exceeds a critical value $A_c$, however, the hole collapses if the liquid volume is further increased; when the substrate is superhydrophobic but the wall is hydrophilic, on increasing the liquid volume, the hole suddenly transfers into a circular hole and is pushed against the wall, leaving the hole dwelling around the centre of the container. Theoretical analyses and numerical simulations are conducted to establish the phase diagram for different wetting modes. It is found that, in the second mode, $A_c$ increases with the size of the container but decreases with the contact angle of the substrate and the wall. Furthermore, we experimentally investigate the dynamics of the hole. The time evolution of the area of the hole obeys a scaling relationship $A \sim (t_0 - t)^{1.1}$ after the hole collapses at time $t_0$.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.753</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Collapse ; Contact angle ; Containers ; Equilibrium ; Hydrophobicity ; Interfaces ; JFM Papers ; Phase diagrams ; Scaling ; Substrates ; Thin films ; Viscosity ; Wettability ; Wetting</subject><ispartof>Journal of fluid mechanics, 2023-10, Vol.973, Article A18</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-2fccaead4ee8a01938f86ee84e2c391c6eb19a83d9b93d3e2e0be0436e4cd6b43</cites><orcidid>0000-0001-8016-6462 ; 0000-0001-8550-2584 ; 0009-0001-8018-1934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202300753X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Zhao, Huanlei</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Lv, Cunjing</creatorcontrib><title>Edge-driven collapse of fluid holes</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We study the stability and collapse of holes at the wall in liquid layers on circular bounded containers with various wettabilities. Three distinct wetting modes of the hole are observed, which are related to the wettability of the container: when the substrate and the inner wall of the container are superhydrophobic, a stable hole remains as the liquid volume is continuously increased until the liquid layer covers the entire substrate; when the substrate and the inner wall are hydrophobic, an eye-shaped hole remains stable as the projected area of the hole exceeds a critical value $A_c$, however, the hole collapses if the liquid volume is further increased; when the substrate is superhydrophobic but the wall is hydrophilic, on increasing the liquid volume, the hole suddenly transfers into a circular hole and is pushed against the wall, leaving the hole dwelling around the centre of the container. Theoretical analyses and numerical simulations are conducted to establish the phase diagram for different wetting modes. It is found that, in the second mode, $A_c$ increases with the size of the container but decreases with the contact angle of the substrate and the wall. Furthermore, we experimentally investigate the dynamics of the hole. The time evolution of the area of the hole obeys a scaling relationship $A \sim (t_0 - t)^{1.1}$ after the hole collapses at time $t_0$.</description><subject>Collapse</subject><subject>Contact angle</subject><subject>Containers</subject><subject>Equilibrium</subject><subject>Hydrophobicity</subject><subject>Interfaces</subject><subject>JFM Papers</subject><subject>Phase diagrams</subject><subject>Scaling</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Viscosity</subject><subject>Wettability</subject><subject>Wetting</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LxDAQhoMouK7e_AGFvdo6-WibHGVZP2DBi55Dmky0pd3WZCv4782yC148zRye9x3mIeSWQkGB1vedHwoGjBd1yc_IgopK5XUlynOyAGAsp5TBJbmKsQOgHFS9IKuN-8DchfYbd5kd-95MEbPRZ76fW5d9jj3Ga3LhTR_x5jSX5P1x87Z-zrevTy_rh21uWan2OfPWGjROIEoDVHHpZZV2gcxyRW2FDVVGcqcaxR1HhtAgCF6hsK5qBF-S1bF3CuPXjHGvu3EOu3RSM1krVUol6kTdHSkbxhgDej2FdjDhR1PQBw06adAHDTppSHhxws3QhDZ9-9f6b-AXML1eXw</recordid><startdate>20231023</startdate><enddate>20231023</enddate><creator>Zhao, Huanlei</creator><creator>Zhang, Bin</creator><creator>Lv, Cunjing</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8016-6462</orcidid><orcidid>https://orcid.org/0000-0001-8550-2584</orcidid><orcidid>https://orcid.org/0009-0001-8018-1934</orcidid></search><sort><creationdate>20231023</creationdate><title>Edge-driven collapse of fluid holes</title><author>Zhao, Huanlei ; Zhang, Bin ; Lv, Cunjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-2fccaead4ee8a01938f86ee84e2c391c6eb19a83d9b93d3e2e0be0436e4cd6b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collapse</topic><topic>Contact angle</topic><topic>Containers</topic><topic>Equilibrium</topic><topic>Hydrophobicity</topic><topic>Interfaces</topic><topic>JFM Papers</topic><topic>Phase diagrams</topic><topic>Scaling</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Viscosity</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Huanlei</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Lv, Cunjing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Huanlei</au><au>Zhang, Bin</au><au>Lv, Cunjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-driven collapse of fluid holes</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-10-23</date><risdate>2023</risdate><volume>973</volume><artnum>A18</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We study the stability and collapse of holes at the wall in liquid layers on circular bounded containers with various wettabilities. Three distinct wetting modes of the hole are observed, which are related to the wettability of the container: when the substrate and the inner wall of the container are superhydrophobic, a stable hole remains as the liquid volume is continuously increased until the liquid layer covers the entire substrate; when the substrate and the inner wall are hydrophobic, an eye-shaped hole remains stable as the projected area of the hole exceeds a critical value $A_c$, however, the hole collapses if the liquid volume is further increased; when the substrate is superhydrophobic but the wall is hydrophilic, on increasing the liquid volume, the hole suddenly transfers into a circular hole and is pushed against the wall, leaving the hole dwelling around the centre of the container. Theoretical analyses and numerical simulations are conducted to establish the phase diagram for different wetting modes. It is found that, in the second mode, $A_c$ increases with the size of the container but decreases with the contact angle of the substrate and the wall. Furthermore, we experimentally investigate the dynamics of the hole. The time evolution of the area of the hole obeys a scaling relationship $A \sim (t_0 - t)^{1.1}$ after the hole collapses at time $t_0$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.753</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-8016-6462</orcidid><orcidid>https://orcid.org/0000-0001-8550-2584</orcidid><orcidid>https://orcid.org/0009-0001-8018-1934</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-10, Vol.973, Article A18
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2879958947
source Cambridge University Press Journals Complete
subjects Collapse
Contact angle
Containers
Equilibrium
Hydrophobicity
Interfaces
JFM Papers
Phase diagrams
Scaling
Substrates
Thin films
Viscosity
Wettability
Wetting
title Edge-driven collapse of fluid holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-driven%20collapse%20of%20fluid%20holes&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Zhao,%20Huanlei&rft.date=2023-10-23&rft.volume=973&rft.artnum=A18&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.753&rft_dat=%3Cproquest_cross%3E2879958947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879958947&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_753&rfr_iscdi=true