A Text Mining Approach to Uncover the Structure of Subject Metadata in the Biodiversity Heritage Library
We propose a bottom‐up, data‐driven pipeline to uncover the structure of biodiversity subject metadata using a combination of text mining approaches. In this study, we analyze 721,035 subject terms in the Biodiversity Heritage Library (BHL). We utilize named entity recognition and word‐embedding met...
Gespeichert in:
Veröffentlicht in: | Proceedings of the ASIST Annual Meeting 2023-10, Vol.60 (1), p.926-928 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 928 |
---|---|
container_issue | 1 |
container_start_page | 926 |
container_title | Proceedings of the ASIST Annual Meeting |
container_volume | 60 |
creator | Cheng, Yi‐Yun Parulian, Nikolaus Nova Dinh, Ly |
description | We propose a bottom‐up, data‐driven pipeline to uncover the structure of biodiversity subject metadata using a combination of text mining approaches. In this study, we analyze 721,035 subject terms in the Biodiversity Heritage Library (BHL). We utilize named entity recognition and word‐embedding methods to systematically label and group terms based on their vector‐space distances. The results show that the subject terms from BHL are clustered into several prominent themes relating to environmental regulations, geographic locations, organisms, and subject access points. We hope that our approach can serve as a first step to group similar subject terms together in large‐scale, constant growing digital collections with aggregated metadata from multiple sources. Ultimately, we hope the next phases of this project can become a basis for biodiversity digital libraries to standardize their vocabularies. |
doi_str_mv | 10.1002/pra2.900 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879746657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879746657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c990-275e5c46639401370f6dbb66ac78b9e3a4c50303cb0d56869313312f128c9a283</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EElWpxE-wxMKScrYTOx5LBRSpiKFhjhzHaV1BHGwH0X-PSxmY7obvvbv3ELomMCcA9G7wis4lwBmaUCZYJikj5__2SzQLYQ8AJBecUzlBuwWuzHfEL7a3_RYvhsE7pXc4OvzWa_dlPI47gzfRjzqO3mDX4c3Y7I1OGhNVq6LCtv-F7q1rbVIEGw94ZbyNamvw2jZe-cMVuujUezCzvzlF1eNDtVxl69en5-VinWkpIaOiMIXOOWcyB8IEdLxtGs6VFmUjDVO5LoAB0w20BS-5ZIQxQjtCSy0VLdkU3ZxsU47P0YRY793o-3SxpqWQIlkXIlG3J0p7F4I3XT14-5G-rAnUxybrY5N1apL9AK3pZK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879746657</pqid></control><display><type>article</type><title>A Text Mining Approach to Uncover the Structure of Subject Metadata in the Biodiversity Heritage Library</title><source>Alma/SFX Local Collection</source><creator>Cheng, Yi‐Yun ; Parulian, Nikolaus Nova ; Dinh, Ly</creator><creatorcontrib>Cheng, Yi‐Yun ; Parulian, Nikolaus Nova ; Dinh, Ly</creatorcontrib><description>We propose a bottom‐up, data‐driven pipeline to uncover the structure of biodiversity subject metadata using a combination of text mining approaches. In this study, we analyze 721,035 subject terms in the Biodiversity Heritage Library (BHL). We utilize named entity recognition and word‐embedding methods to systematically label and group terms based on their vector‐space distances. The results show that the subject terms from BHL are clustered into several prominent themes relating to environmental regulations, geographic locations, organisms, and subject access points. We hope that our approach can serve as a first step to group similar subject terms together in large‐scale, constant growing digital collections with aggregated metadata from multiple sources. Ultimately, we hope the next phases of this project can become a basis for biodiversity digital libraries to standardize their vocabularies.</description><identifier>ISSN: 2373-9231</identifier><identifier>EISSN: 2373-9231</identifier><identifier>EISSN: 1550-8390</identifier><identifier>DOI: 10.1002/pra2.900</identifier><language>eng</language><publisher>Silver Spring: Wiley Subscription Services, Inc</publisher><subject>Biodiversity ; Data mining ; Geographical locations ; Libraries ; Metadata</subject><ispartof>Proceedings of the ASIST Annual Meeting, 2023-10, Vol.60 (1), p.926-928</ispartof><rights>2023 ASIS&T</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c990-275e5c46639401370f6dbb66ac78b9e3a4c50303cb0d56869313312f128c9a283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Cheng, Yi‐Yun</creatorcontrib><creatorcontrib>Parulian, Nikolaus Nova</creatorcontrib><creatorcontrib>Dinh, Ly</creatorcontrib><title>A Text Mining Approach to Uncover the Structure of Subject Metadata in the Biodiversity Heritage Library</title><title>Proceedings of the ASIST Annual Meeting</title><description>We propose a bottom‐up, data‐driven pipeline to uncover the structure of biodiversity subject metadata using a combination of text mining approaches. In this study, we analyze 721,035 subject terms in the Biodiversity Heritage Library (BHL). We utilize named entity recognition and word‐embedding methods to systematically label and group terms based on their vector‐space distances. The results show that the subject terms from BHL are clustered into several prominent themes relating to environmental regulations, geographic locations, organisms, and subject access points. We hope that our approach can serve as a first step to group similar subject terms together in large‐scale, constant growing digital collections with aggregated metadata from multiple sources. Ultimately, we hope the next phases of this project can become a basis for biodiversity digital libraries to standardize their vocabularies.</description><subject>Biodiversity</subject><subject>Data mining</subject><subject>Geographical locations</subject><subject>Libraries</subject><subject>Metadata</subject><issn>2373-9231</issn><issn>2373-9231</issn><issn>1550-8390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAQhS0EElWpxE-wxMKScrYTOx5LBRSpiKFhjhzHaV1BHGwH0X-PSxmY7obvvbv3ELomMCcA9G7wis4lwBmaUCZYJikj5__2SzQLYQ8AJBecUzlBuwWuzHfEL7a3_RYvhsE7pXc4OvzWa_dlPI47gzfRjzqO3mDX4c3Y7I1OGhNVq6LCtv-F7q1rbVIEGw94ZbyNamvw2jZe-cMVuujUezCzvzlF1eNDtVxl69en5-VinWkpIaOiMIXOOWcyB8IEdLxtGs6VFmUjDVO5LoAB0w20BS-5ZIQxQjtCSy0VLdkU3ZxsU47P0YRY793o-3SxpqWQIlkXIlG3J0p7F4I3XT14-5G-rAnUxybrY5N1apL9AK3pZK8</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Cheng, Yi‐Yun</creator><creator>Parulian, Nikolaus Nova</creator><creator>Dinh, Ly</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202310</creationdate><title>A Text Mining Approach to Uncover the Structure of Subject Metadata in the Biodiversity Heritage Library</title><author>Cheng, Yi‐Yun ; Parulian, Nikolaus Nova ; Dinh, Ly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c990-275e5c46639401370f6dbb66ac78b9e3a4c50303cb0d56869313312f128c9a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biodiversity</topic><topic>Data mining</topic><topic>Geographical locations</topic><topic>Libraries</topic><topic>Metadata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yi‐Yun</creatorcontrib><creatorcontrib>Parulian, Nikolaus Nova</creatorcontrib><creatorcontrib>Dinh, Ly</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Proceedings of the ASIST Annual Meeting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yi‐Yun</au><au>Parulian, Nikolaus Nova</au><au>Dinh, Ly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Text Mining Approach to Uncover the Structure of Subject Metadata in the Biodiversity Heritage Library</atitle><jtitle>Proceedings of the ASIST Annual Meeting</jtitle><date>2023-10</date><risdate>2023</risdate><volume>60</volume><issue>1</issue><spage>926</spage><epage>928</epage><pages>926-928</pages><issn>2373-9231</issn><eissn>2373-9231</eissn><eissn>1550-8390</eissn><abstract>We propose a bottom‐up, data‐driven pipeline to uncover the structure of biodiversity subject metadata using a combination of text mining approaches. In this study, we analyze 721,035 subject terms in the Biodiversity Heritage Library (BHL). We utilize named entity recognition and word‐embedding methods to systematically label and group terms based on their vector‐space distances. The results show that the subject terms from BHL are clustered into several prominent themes relating to environmental regulations, geographic locations, organisms, and subject access points. We hope that our approach can serve as a first step to group similar subject terms together in large‐scale, constant growing digital collections with aggregated metadata from multiple sources. Ultimately, we hope the next phases of this project can become a basis for biodiversity digital libraries to standardize their vocabularies.</abstract><cop>Silver Spring</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pra2.900</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2373-9231 |
ispartof | Proceedings of the ASIST Annual Meeting, 2023-10, Vol.60 (1), p.926-928 |
issn | 2373-9231 2373-9231 1550-8390 |
language | eng |
recordid | cdi_proquest_journals_2879746657 |
source | Alma/SFX Local Collection |
subjects | Biodiversity Data mining Geographical locations Libraries Metadata |
title | A Text Mining Approach to Uncover the Structure of Subject Metadata in the Biodiversity Heritage Library |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Text%20Mining%20Approach%20to%20Uncover%20the%20Structure%20of%20Subject%20Metadata%20in%20the%20Biodiversity%20Heritage%20Library&rft.jtitle=Proceedings%20of%20the%20ASIST%20Annual%20Meeting&rft.au=Cheng,%20Yi%E2%80%90Yun&rft.date=2023-10&rft.volume=60&rft.issue=1&rft.spage=926&rft.epage=928&rft.pages=926-928&rft.issn=2373-9231&rft.eissn=2373-9231&rft_id=info:doi/10.1002/pra2.900&rft_dat=%3Cproquest_cross%3E2879746657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879746657&rft_id=info:pmid/&rfr_iscdi=true |