Spatiotemporal Kernel of a Three-Component Differential Equation Model with Self-control Mechanism in Vision

This paper examines a three-component differential equation model with a self-control mechanism in vision as a slight extension of the lateral inhibition model proposed by Peskin (Partial differential equations in biology: Courant Institute of Mathematical Sciences Lecture Notes, New York, 1976). Fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2023-12, Vol.65 (6), p.894-914
Hauptverfasser: Kondo, Shintaro, Mori, Masaki, Sushida, Takamichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 914
container_issue 6
container_start_page 894
container_title Journal of mathematical imaging and vision
container_volume 65
creator Kondo, Shintaro
Mori, Masaki
Sushida, Takamichi
description This paper examines a three-component differential equation model with a self-control mechanism in vision as a slight extension of the lateral inhibition model proposed by Peskin (Partial differential equations in biology: Courant Institute of Mathematical Sciences Lecture Notes, New York, 1976). First, we derive a condition under which the exact solution of our differential equation model for time-dependent input I = I ( t ) is described by the convolution integral with a temporal biphasic function. Second, we analyze the model with the input signal I = I ( t , x ) depending on time t and position x ∈ R , and we prove that the solution can be represented in convolution integral form and that t 1 > 0 exists such that the spatiotemporal integral kernel K u ( t 1 , x ) is positive for x ∈ R and t ∈ ( 0 , t 1 ) . Moreover, we numerically demonstrate that there exists t 2 ( > t 1 ) such that K u ( t 2 , x ) includes the Mexican-hat function and a temporal biphasic function under certain parameter conditions. From these mathematical and numerical results, we find that there is a time lag before the Mexican-hat function appears in K u ( t , x ) , and the shape of K u ( t , x ) is similar to the receptive field structure observed in experiments in the field of neurophysiology. We conclude that the partial differential equations for visual information processing can be used to analytically determine the shape of the spatiotemporal kernel indicating the self-control mechanism.
doi_str_mv 10.1007/s10851-023-01151-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879581157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879581157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-e29ddec8d1fdf5ef36884b7e4e3ccb88e8741118ec7a7d884ec8498c584fa9343</originalsourceid><addsrcrecordid>eNp9kE1PAyEQQInRxFr9A55IPKOwsIU9mlo_oo2HVq-EsoPdZgtb2Mb472WtiTdPTDLvDclD6JLRa0apvEmMqpIRWnBCGRumIzRipeREThQ_RiNaFYJUFZWn6CylDaVUFUyOULvoTN-EHrZdiKbFzxA9tDg4bPByHQHINOSVB9_ju8Y5iHlqMjjb7QfR43mos_DZ9Gu8gNYRG3wfQ4vnYNfGN2mLG4_fm5TZc3TiTJvg4vcdo7f72XL6SF5eH56mty_EciZ6AkVV12BVzVztSnB8opRYSRDArV0pBUoKxpgCK42s8y6zolK2VMKZigs-RleHu10Muz2kXm_CPvr8pS6UrErFhjRjVBwoG0NKEZzuYrM18Uszqoeq-lBV56r6p6qmWeIHKWXYf0D8O_2P9Q3b6HvW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879581157</pqid></control><display><type>article</type><title>Spatiotemporal Kernel of a Three-Component Differential Equation Model with Self-control Mechanism in Vision</title><source>SpringerNature Journals</source><creator>Kondo, Shintaro ; Mori, Masaki ; Sushida, Takamichi</creator><creatorcontrib>Kondo, Shintaro ; Mori, Masaki ; Sushida, Takamichi</creatorcontrib><description>This paper examines a three-component differential equation model with a self-control mechanism in vision as a slight extension of the lateral inhibition model proposed by Peskin (Partial differential equations in biology: Courant Institute of Mathematical Sciences Lecture Notes, New York, 1976). First, we derive a condition under which the exact solution of our differential equation model for time-dependent input I = I ( t ) is described by the convolution integral with a temporal biphasic function. Second, we analyze the model with the input signal I = I ( t , x ) depending on time t and position x ∈ R , and we prove that the solution can be represented in convolution integral form and that t 1 &gt; 0 exists such that the spatiotemporal integral kernel K u ( t 1 , x ) is positive for x ∈ R and t ∈ ( 0 , t 1 ) . Moreover, we numerically demonstrate that there exists t 2 ( &gt; t 1 ) such that K u ( t 2 , x ) includes the Mexican-hat function and a temporal biphasic function under certain parameter conditions. From these mathematical and numerical results, we find that there is a time lag before the Mexican-hat function appears in K u ( t , x ) , and the shape of K u ( t , x ) is similar to the receptive field structure observed in experiments in the field of neurophysiology. We conclude that the partial differential equations for visual information processing can be used to analytically determine the shape of the spatiotemporal kernel indicating the self-control mechanism.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-023-01151-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Convolution integrals ; Data processing ; Exact solutions ; Image Processing and Computer Vision ; Kernels ; Mathematical Methods in Physics ; Mathematical models ; Neurophysiology ; Partial differential equations ; Self control ; Signal,Image and Speech Processing ; Time dependence ; Time lag ; Vision</subject><ispartof>Journal of mathematical imaging and vision, 2023-12, Vol.65 (6), p.894-914</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-e29ddec8d1fdf5ef36884b7e4e3ccb88e8741118ec7a7d884ec8498c584fa9343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-023-01151-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-023-01151-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Kondo, Shintaro</creatorcontrib><creatorcontrib>Mori, Masaki</creatorcontrib><creatorcontrib>Sushida, Takamichi</creatorcontrib><title>Spatiotemporal Kernel of a Three-Component Differential Equation Model with Self-control Mechanism in Vision</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>This paper examines a three-component differential equation model with a self-control mechanism in vision as a slight extension of the lateral inhibition model proposed by Peskin (Partial differential equations in biology: Courant Institute of Mathematical Sciences Lecture Notes, New York, 1976). First, we derive a condition under which the exact solution of our differential equation model for time-dependent input I = I ( t ) is described by the convolution integral with a temporal biphasic function. Second, we analyze the model with the input signal I = I ( t , x ) depending on time t and position x ∈ R , and we prove that the solution can be represented in convolution integral form and that t 1 &gt; 0 exists such that the spatiotemporal integral kernel K u ( t 1 , x ) is positive for x ∈ R and t ∈ ( 0 , t 1 ) . Moreover, we numerically demonstrate that there exists t 2 ( &gt; t 1 ) such that K u ( t 2 , x ) includes the Mexican-hat function and a temporal biphasic function under certain parameter conditions. From these mathematical and numerical results, we find that there is a time lag before the Mexican-hat function appears in K u ( t , x ) , and the shape of K u ( t , x ) is similar to the receptive field structure observed in experiments in the field of neurophysiology. We conclude that the partial differential equations for visual information processing can be used to analytically determine the shape of the spatiotemporal kernel indicating the self-control mechanism.</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Convolution integrals</subject><subject>Data processing</subject><subject>Exact solutions</subject><subject>Image Processing and Computer Vision</subject><subject>Kernels</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Neurophysiology</subject><subject>Partial differential equations</subject><subject>Self control</subject><subject>Signal,Image and Speech Processing</subject><subject>Time dependence</subject><subject>Time lag</subject><subject>Vision</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQQInRxFr9A55IPKOwsIU9mlo_oo2HVq-EsoPdZgtb2Mb472WtiTdPTDLvDclD6JLRa0apvEmMqpIRWnBCGRumIzRipeREThQ_RiNaFYJUFZWn6CylDaVUFUyOULvoTN-EHrZdiKbFzxA9tDg4bPByHQHINOSVB9_ju8Y5iHlqMjjb7QfR43mos_DZ9Gu8gNYRG3wfQ4vnYNfGN2mLG4_fm5TZc3TiTJvg4vcdo7f72XL6SF5eH56mty_EciZ6AkVV12BVzVztSnB8opRYSRDArV0pBUoKxpgCK42s8y6zolK2VMKZigs-RleHu10Muz2kXm_CPvr8pS6UrErFhjRjVBwoG0NKEZzuYrM18Uszqoeq-lBV56r6p6qmWeIHKWXYf0D8O_2P9Q3b6HvW</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kondo, Shintaro</creator><creator>Mori, Masaki</creator><creator>Sushida, Takamichi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Spatiotemporal Kernel of a Three-Component Differential Equation Model with Self-control Mechanism in Vision</title><author>Kondo, Shintaro ; Mori, Masaki ; Sushida, Takamichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-e29ddec8d1fdf5ef36884b7e4e3ccb88e8741118ec7a7d884ec8498c584fa9343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Convolution integrals</topic><topic>Data processing</topic><topic>Exact solutions</topic><topic>Image Processing and Computer Vision</topic><topic>Kernels</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Neurophysiology</topic><topic>Partial differential equations</topic><topic>Self control</topic><topic>Signal,Image and Speech Processing</topic><topic>Time dependence</topic><topic>Time lag</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kondo, Shintaro</creatorcontrib><creatorcontrib>Mori, Masaki</creatorcontrib><creatorcontrib>Sushida, Takamichi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kondo, Shintaro</au><au>Mori, Masaki</au><au>Sushida, Takamichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Kernel of a Three-Component Differential Equation Model with Self-control Mechanism in Vision</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>65</volume><issue>6</issue><spage>894</spage><epage>914</epage><pages>894-914</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>This paper examines a three-component differential equation model with a self-control mechanism in vision as a slight extension of the lateral inhibition model proposed by Peskin (Partial differential equations in biology: Courant Institute of Mathematical Sciences Lecture Notes, New York, 1976). First, we derive a condition under which the exact solution of our differential equation model for time-dependent input I = I ( t ) is described by the convolution integral with a temporal biphasic function. Second, we analyze the model with the input signal I = I ( t , x ) depending on time t and position x ∈ R , and we prove that the solution can be represented in convolution integral form and that t 1 &gt; 0 exists such that the spatiotemporal integral kernel K u ( t 1 , x ) is positive for x ∈ R and t ∈ ( 0 , t 1 ) . Moreover, we numerically demonstrate that there exists t 2 ( &gt; t 1 ) such that K u ( t 2 , x ) includes the Mexican-hat function and a temporal biphasic function under certain parameter conditions. From these mathematical and numerical results, we find that there is a time lag before the Mexican-hat function appears in K u ( t , x ) , and the shape of K u ( t , x ) is similar to the receptive field structure observed in experiments in the field of neurophysiology. We conclude that the partial differential equations for visual information processing can be used to analytically determine the shape of the spatiotemporal kernel indicating the self-control mechanism.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-023-01151-0</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2023-12, Vol.65 (6), p.894-914
issn 0924-9907
1573-7683
language eng
recordid cdi_proquest_journals_2879581157
source SpringerNature Journals
subjects Applications of Mathematics
Computer Science
Convolution integrals
Data processing
Exact solutions
Image Processing and Computer Vision
Kernels
Mathematical Methods in Physics
Mathematical models
Neurophysiology
Partial differential equations
Self control
Signal,Image and Speech Processing
Time dependence
Time lag
Vision
title Spatiotemporal Kernel of a Three-Component Differential Equation Model with Self-control Mechanism in Vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Kernel%20of%20a%20Three-Component%20Differential%20Equation%20Model%20with%20Self-control%20Mechanism%20in%20Vision&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Kondo,%20Shintaro&rft.date=2023-12-01&rft.volume=65&rft.issue=6&rft.spage=894&rft.epage=914&rft.pages=894-914&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-023-01151-0&rft_dat=%3Cproquest_cross%3E2879581157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879581157&rft_id=info:pmid/&rfr_iscdi=true