Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration
Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxia...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2023-10, Vol.38 (19), p.4335-4344 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4344 |
---|---|
container_issue | 19 |
container_start_page | 4335 |
container_title | Journal of materials research |
container_volume | 38 |
creator | Halter, Mattia Morabito, Elisabetta Olziersky, Antonis Carrétéro, Cécile Chanthbouala, André Falcone, Donato Francesco Offrein, Bert Jan Bégon-Lours, Laura |
description | Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxial 4 nm-BiFeO
3
/Ca
0.96
Ce
0.04
MnO
3
//YAlO
3
is combined with Ni electrodes. The oxidation of Ni during the processing affects the polarity of the FTJ and the On/Off ratio, which becomes comparable to that of CMOS-compatible HfZrO
4
junctions. The latter have a wider coercive field distribution: consequently, in test crossbar arrays, BiFeO
3
exhibits a smaller cross-talk than HfZrO
4
. Furthermore, the relatively larger threshold for ferroelectric switching in BiFeO
3
allows the use application of half-programming schemes for supervised and unsupervised learning. Second, the heterostructure is combined with W and Pt electrodes. The design is optimized for the controlled collapse chip connection to neuromorphic circuits.
Graphical abstract |
doi_str_mv | 10.1557/s43578-023-01158-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879581132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879581132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a986db492593b4578849d7aa200ae1acabf7e755be631ade68b0091fc88d4fe93</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAVaWWIf6N7HZQUQBqagbWFtOMq5StXax3QU77sANOQkpQWLHaqTR977RPIQuKbmmUlazJLisVEEYLwilUhXqCE0YEaKQnJXHaEKUEgXTVJyis5TWhFBJKjFBro4hpcZGHHYQbe6Dx8Hhu34OSz6r4evjs7bPfsmxgxgDbKDNsW9x3nsPG7ze-_bApBs8j2GLtzZD7O0m4Rxw7zOsxs5zdOKGLVz8zil6nd-_1I_FYvnwVN8uipZTkQurVdk1QjOpeSOGj5TQXWUtI8QCta1tXAWVlA2UnNoOStUQoqlrleqEA82n6Grs3cXwtoeUzTrsox9OGqYqLRWlnA0pNqbaw_MRnNnFfmvju6HEHHya0acZfJofn0YNEB-hNIT9CuJf9T_UN_Zlekw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879581132</pqid></control><display><type>article</type><title>Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration</title><source>SpringerLink Journals - AutoHoldings</source><creator>Halter, Mattia ; Morabito, Elisabetta ; Olziersky, Antonis ; Carrétéro, Cécile ; Chanthbouala, André ; Falcone, Donato Francesco ; Offrein, Bert Jan ; Bégon-Lours, Laura</creator><creatorcontrib>Halter, Mattia ; Morabito, Elisabetta ; Olziersky, Antonis ; Carrétéro, Cécile ; Chanthbouala, André ; Falcone, Donato Francesco ; Offrein, Bert Jan ; Bégon-Lours, Laura</creatorcontrib><description>Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxial 4 nm-BiFeO
3
/Ca
0.96
Ce
0.04
MnO
3
//YAlO
3
is combined with Ni electrodes. The oxidation of Ni during the processing affects the polarity of the FTJ and the On/Off ratio, which becomes comparable to that of CMOS-compatible HfZrO
4
junctions. The latter have a wider coercive field distribution: consequently, in test crossbar arrays, BiFeO
3
exhibits a smaller cross-talk than HfZrO
4
. Furthermore, the relatively larger threshold for ferroelectric switching in BiFeO
3
allows the use application of half-programming schemes for supervised and unsupervised learning. Second, the heterostructure is combined with W and Pt electrodes. The design is optimized for the controlled collapse chip connection to neuromorphic circuits.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-023-01158-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Arrays ; Artificial neural networks ; Biomaterials ; Chemistry and Materials Science ; Circuit design ; Coercivity ; Design optimization ; Electrodes ; Ferroelectric materials ; Ferroelectricity ; Heterostructures ; Inorganic Chemistry ; Invited Feature Paper ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Oxidation ; Synapses ; Tunnel junctions ; Unsupervised learning</subject><ispartof>Journal of materials research, 2023-10, Vol.38 (19), p.4335-4344</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-a986db492593b4578849d7aa200ae1acabf7e755be631ade68b0091fc88d4fe93</cites><orcidid>0009-0001-7901-3909 ; 0009-0005-8732-3826 ; 0000-0001-8468-9105 ; 0000-0003-2520-3317 ; 0000-0001-6082-0068 ; 0000-0002-7328-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-023-01158-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-023-01158-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Halter, Mattia</creatorcontrib><creatorcontrib>Morabito, Elisabetta</creatorcontrib><creatorcontrib>Olziersky, Antonis</creatorcontrib><creatorcontrib>Carrétéro, Cécile</creatorcontrib><creatorcontrib>Chanthbouala, André</creatorcontrib><creatorcontrib>Falcone, Donato Francesco</creatorcontrib><creatorcontrib>Offrein, Bert Jan</creatorcontrib><creatorcontrib>Bégon-Lours, Laura</creatorcontrib><title>Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxial 4 nm-BiFeO
3
/Ca
0.96
Ce
0.04
MnO
3
//YAlO
3
is combined with Ni electrodes. The oxidation of Ni during the processing affects the polarity of the FTJ and the On/Off ratio, which becomes comparable to that of CMOS-compatible HfZrO
4
junctions. The latter have a wider coercive field distribution: consequently, in test crossbar arrays, BiFeO
3
exhibits a smaller cross-talk than HfZrO
4
. Furthermore, the relatively larger threshold for ferroelectric switching in BiFeO
3
allows the use application of half-programming schemes for supervised and unsupervised learning. Second, the heterostructure is combined with W and Pt electrodes. The design is optimized for the controlled collapse chip connection to neuromorphic circuits.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Circuit design</subject><subject>Coercivity</subject><subject>Design optimization</subject><subject>Electrodes</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Heterostructures</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Paper</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Synapses</subject><subject>Tunnel junctions</subject><subject>Unsupervised learning</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1OwzAQRi0EEqVwAVaWWIf6N7HZQUQBqagbWFtOMq5StXax3QU77sANOQkpQWLHaqTR977RPIQuKbmmUlazJLisVEEYLwilUhXqCE0YEaKQnJXHaEKUEgXTVJyis5TWhFBJKjFBro4hpcZGHHYQbe6Dx8Hhu34OSz6r4evjs7bPfsmxgxgDbKDNsW9x3nsPG7ze-_bApBs8j2GLtzZD7O0m4Rxw7zOsxs5zdOKGLVz8zil6nd-_1I_FYvnwVN8uipZTkQurVdk1QjOpeSOGj5TQXWUtI8QCta1tXAWVlA2UnNoOStUQoqlrleqEA82n6Grs3cXwtoeUzTrsox9OGqYqLRWlnA0pNqbaw_MRnNnFfmvju6HEHHya0acZfJofn0YNEB-hNIT9CuJf9T_UN_Zlekw</recordid><startdate>20231014</startdate><enddate>20231014</enddate><creator>Halter, Mattia</creator><creator>Morabito, Elisabetta</creator><creator>Olziersky, Antonis</creator><creator>Carrétéro, Cécile</creator><creator>Chanthbouala, André</creator><creator>Falcone, Donato Francesco</creator><creator>Offrein, Bert Jan</creator><creator>Bégon-Lours, Laura</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0009-0001-7901-3909</orcidid><orcidid>https://orcid.org/0009-0005-8732-3826</orcidid><orcidid>https://orcid.org/0000-0001-8468-9105</orcidid><orcidid>https://orcid.org/0000-0003-2520-3317</orcidid><orcidid>https://orcid.org/0000-0001-6082-0068</orcidid><orcidid>https://orcid.org/0000-0002-7328-9621</orcidid></search><sort><creationdate>20231014</creationdate><title>Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration</title><author>Halter, Mattia ; Morabito, Elisabetta ; Olziersky, Antonis ; Carrétéro, Cécile ; Chanthbouala, André ; Falcone, Donato Francesco ; Offrein, Bert Jan ; Bégon-Lours, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a986db492593b4578849d7aa200ae1acabf7e755be631ade68b0091fc88d4fe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Circuit design</topic><topic>Coercivity</topic><topic>Design optimization</topic><topic>Electrodes</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Heterostructures</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Paper</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Synapses</topic><topic>Tunnel junctions</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halter, Mattia</creatorcontrib><creatorcontrib>Morabito, Elisabetta</creatorcontrib><creatorcontrib>Olziersky, Antonis</creatorcontrib><creatorcontrib>Carrétéro, Cécile</creatorcontrib><creatorcontrib>Chanthbouala, André</creatorcontrib><creatorcontrib>Falcone, Donato Francesco</creatorcontrib><creatorcontrib>Offrein, Bert Jan</creatorcontrib><creatorcontrib>Bégon-Lours, Laura</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halter, Mattia</au><au>Morabito, Elisabetta</au><au>Olziersky, Antonis</au><au>Carrétéro, Cécile</au><au>Chanthbouala, André</au><au>Falcone, Donato Francesco</au><au>Offrein, Bert Jan</au><au>Bégon-Lours, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-10-14</date><risdate>2023</risdate><volume>38</volume><issue>19</issue><spage>4335</spage><epage>4344</epage><pages>4335-4344</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxial 4 nm-BiFeO
3
/Ca
0.96
Ce
0.04
MnO
3
//YAlO
3
is combined with Ni electrodes. The oxidation of Ni during the processing affects the polarity of the FTJ and the On/Off ratio, which becomes comparable to that of CMOS-compatible HfZrO
4
junctions. The latter have a wider coercive field distribution: consequently, in test crossbar arrays, BiFeO
3
exhibits a smaller cross-talk than HfZrO
4
. Furthermore, the relatively larger threshold for ferroelectric switching in BiFeO
3
allows the use application of half-programming schemes for supervised and unsupervised learning. Second, the heterostructure is combined with W and Pt electrodes. The design is optimized for the controlled collapse chip connection to neuromorphic circuits.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-023-01158-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-7901-3909</orcidid><orcidid>https://orcid.org/0009-0005-8732-3826</orcidid><orcidid>https://orcid.org/0000-0001-8468-9105</orcidid><orcidid>https://orcid.org/0000-0003-2520-3317</orcidid><orcidid>https://orcid.org/0000-0001-6082-0068</orcidid><orcidid>https://orcid.org/0000-0002-7328-9621</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2023-10, Vol.38 (19), p.4335-4344 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2879581132 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied and Technical Physics Arrays Artificial neural networks Biomaterials Chemistry and Materials Science Circuit design Coercivity Design optimization Electrodes Ferroelectric materials Ferroelectricity Heterostructures Inorganic Chemistry Invited Feature Paper Materials Engineering Materials research Materials Science Nanotechnology Oxidation Synapses Tunnel junctions Unsupervised learning |
title | Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossbar%20operation%20of%20BiFeO3/Ce%E2%80%93CaMnO3%20ferroelectric%20tunnel%20junctions:%20From%20materials%20to%20integration&rft.jtitle=Journal%20of%20materials%20research&rft.au=Halter,%20Mattia&rft.date=2023-10-14&rft.volume=38&rft.issue=19&rft.spage=4335&rft.epage=4344&rft.pages=4335-4344&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-023-01158-8&rft_dat=%3Cproquest_cross%3E2879581132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879581132&rft_id=info:pmid/&rfr_iscdi=true |