Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration

Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2023-10, Vol.38 (19), p.4335-4344
Hauptverfasser: Halter, Mattia, Morabito, Elisabetta, Olziersky, Antonis, Carrétéro, Cécile, Chanthbouala, André, Falcone, Donato Francesco, Offrein, Bert Jan, Bégon-Lours, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4344
container_issue 19
container_start_page 4335
container_title Journal of materials research
container_volume 38
creator Halter, Mattia
Morabito, Elisabetta
Olziersky, Antonis
Carrétéro, Cécile
Chanthbouala, André
Falcone, Donato Francesco
Offrein, Bert Jan
Bégon-Lours, Laura
description Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxial 4 nm-BiFeO 3 /Ca 0.96 Ce 0.04 MnO 3 //YAlO 3 is combined with Ni electrodes. The oxidation of Ni during the processing affects the polarity of the FTJ and the On/Off ratio, which becomes comparable to that of CMOS-compatible HfZrO 4 junctions. The latter have a wider coercive field distribution: consequently, in test crossbar arrays, BiFeO 3 exhibits a smaller cross-talk than HfZrO 4 . Furthermore, the relatively larger threshold for ferroelectric switching in BiFeO 3 allows the use application of half-programming schemes for supervised and unsupervised learning. Second, the heterostructure is combined with W and Pt electrodes. The design is optimized for the controlled collapse chip connection to neuromorphic circuits. Graphical abstract
doi_str_mv 10.1557/s43578-023-01158-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879581132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879581132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a986db492593b4578849d7aa200ae1acabf7e755be631ade68b0091fc88d4fe93</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAVaWWIf6N7HZQUQBqagbWFtOMq5StXax3QU77sANOQkpQWLHaqTR977RPIQuKbmmUlazJLisVEEYLwilUhXqCE0YEaKQnJXHaEKUEgXTVJyis5TWhFBJKjFBro4hpcZGHHYQbe6Dx8Hhu34OSz6r4evjs7bPfsmxgxgDbKDNsW9x3nsPG7ze-_bApBs8j2GLtzZD7O0m4Rxw7zOsxs5zdOKGLVz8zil6nd-_1I_FYvnwVN8uipZTkQurVdk1QjOpeSOGj5TQXWUtI8QCta1tXAWVlA2UnNoOStUQoqlrleqEA82n6Grs3cXwtoeUzTrsox9OGqYqLRWlnA0pNqbaw_MRnNnFfmvju6HEHHya0acZfJofn0YNEB-hNIT9CuJf9T_UN_Zlekw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879581132</pqid></control><display><type>article</type><title>Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration</title><source>SpringerLink Journals - AutoHoldings</source><creator>Halter, Mattia ; Morabito, Elisabetta ; Olziersky, Antonis ; Carrétéro, Cécile ; Chanthbouala, André ; Falcone, Donato Francesco ; Offrein, Bert Jan ; Bégon-Lours, Laura</creator><creatorcontrib>Halter, Mattia ; Morabito, Elisabetta ; Olziersky, Antonis ; Carrétéro, Cécile ; Chanthbouala, André ; Falcone, Donato Francesco ; Offrein, Bert Jan ; Bégon-Lours, Laura</creatorcontrib><description>Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxial 4 nm-BiFeO 3 /Ca 0.96 Ce 0.04 MnO 3 //YAlO 3 is combined with Ni electrodes. The oxidation of Ni during the processing affects the polarity of the FTJ and the On/Off ratio, which becomes comparable to that of CMOS-compatible HfZrO 4 junctions. The latter have a wider coercive field distribution: consequently, in test crossbar arrays, BiFeO 3 exhibits a smaller cross-talk than HfZrO 4 . Furthermore, the relatively larger threshold for ferroelectric switching in BiFeO 3 allows the use application of half-programming schemes for supervised and unsupervised learning. Second, the heterostructure is combined with W and Pt electrodes. The design is optimized for the controlled collapse chip connection to neuromorphic circuits. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-023-01158-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Arrays ; Artificial neural networks ; Biomaterials ; Chemistry and Materials Science ; Circuit design ; Coercivity ; Design optimization ; Electrodes ; Ferroelectric materials ; Ferroelectricity ; Heterostructures ; Inorganic Chemistry ; Invited Feature Paper ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Oxidation ; Synapses ; Tunnel junctions ; Unsupervised learning</subject><ispartof>Journal of materials research, 2023-10, Vol.38 (19), p.4335-4344</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-a986db492593b4578849d7aa200ae1acabf7e755be631ade68b0091fc88d4fe93</cites><orcidid>0009-0001-7901-3909 ; 0009-0005-8732-3826 ; 0000-0001-8468-9105 ; 0000-0003-2520-3317 ; 0000-0001-6082-0068 ; 0000-0002-7328-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-023-01158-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-023-01158-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Halter, Mattia</creatorcontrib><creatorcontrib>Morabito, Elisabetta</creatorcontrib><creatorcontrib>Olziersky, Antonis</creatorcontrib><creatorcontrib>Carrétéro, Cécile</creatorcontrib><creatorcontrib>Chanthbouala, André</creatorcontrib><creatorcontrib>Falcone, Donato Francesco</creatorcontrib><creatorcontrib>Offrein, Bert Jan</creatorcontrib><creatorcontrib>Bégon-Lours, Laura</creatorcontrib><title>Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxial 4 nm-BiFeO 3 /Ca 0.96 Ce 0.04 MnO 3 //YAlO 3 is combined with Ni electrodes. The oxidation of Ni during the processing affects the polarity of the FTJ and the On/Off ratio, which becomes comparable to that of CMOS-compatible HfZrO 4 junctions. The latter have a wider coercive field distribution: consequently, in test crossbar arrays, BiFeO 3 exhibits a smaller cross-talk than HfZrO 4 . Furthermore, the relatively larger threshold for ferroelectric switching in BiFeO 3 allows the use application of half-programming schemes for supervised and unsupervised learning. Second, the heterostructure is combined with W and Pt electrodes. The design is optimized for the controlled collapse chip connection to neuromorphic circuits. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Circuit design</subject><subject>Coercivity</subject><subject>Design optimization</subject><subject>Electrodes</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Heterostructures</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Paper</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Synapses</subject><subject>Tunnel junctions</subject><subject>Unsupervised learning</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1OwzAQRi0EEqVwAVaWWIf6N7HZQUQBqagbWFtOMq5StXax3QU77sANOQkpQWLHaqTR977RPIQuKbmmUlazJLisVEEYLwilUhXqCE0YEaKQnJXHaEKUEgXTVJyis5TWhFBJKjFBro4hpcZGHHYQbe6Dx8Hhu34OSz6r4evjs7bPfsmxgxgDbKDNsW9x3nsPG7ze-_bApBs8j2GLtzZD7O0m4Rxw7zOsxs5zdOKGLVz8zil6nd-_1I_FYvnwVN8uipZTkQurVdk1QjOpeSOGj5TQXWUtI8QCta1tXAWVlA2UnNoOStUQoqlrleqEA82n6Grs3cXwtoeUzTrsox9OGqYqLRWlnA0pNqbaw_MRnNnFfmvju6HEHHya0acZfJofn0YNEB-hNIT9CuJf9T_UN_Zlekw</recordid><startdate>20231014</startdate><enddate>20231014</enddate><creator>Halter, Mattia</creator><creator>Morabito, Elisabetta</creator><creator>Olziersky, Antonis</creator><creator>Carrétéro, Cécile</creator><creator>Chanthbouala, André</creator><creator>Falcone, Donato Francesco</creator><creator>Offrein, Bert Jan</creator><creator>Bégon-Lours, Laura</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0009-0001-7901-3909</orcidid><orcidid>https://orcid.org/0009-0005-8732-3826</orcidid><orcidid>https://orcid.org/0000-0001-8468-9105</orcidid><orcidid>https://orcid.org/0000-0003-2520-3317</orcidid><orcidid>https://orcid.org/0000-0001-6082-0068</orcidid><orcidid>https://orcid.org/0000-0002-7328-9621</orcidid></search><sort><creationdate>20231014</creationdate><title>Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration</title><author>Halter, Mattia ; Morabito, Elisabetta ; Olziersky, Antonis ; Carrétéro, Cécile ; Chanthbouala, André ; Falcone, Donato Francesco ; Offrein, Bert Jan ; Bégon-Lours, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a986db492593b4578849d7aa200ae1acabf7e755be631ade68b0091fc88d4fe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Circuit design</topic><topic>Coercivity</topic><topic>Design optimization</topic><topic>Electrodes</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Heterostructures</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Paper</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Synapses</topic><topic>Tunnel junctions</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halter, Mattia</creatorcontrib><creatorcontrib>Morabito, Elisabetta</creatorcontrib><creatorcontrib>Olziersky, Antonis</creatorcontrib><creatorcontrib>Carrétéro, Cécile</creatorcontrib><creatorcontrib>Chanthbouala, André</creatorcontrib><creatorcontrib>Falcone, Donato Francesco</creatorcontrib><creatorcontrib>Offrein, Bert Jan</creatorcontrib><creatorcontrib>Bégon-Lours, Laura</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halter, Mattia</au><au>Morabito, Elisabetta</au><au>Olziersky, Antonis</au><au>Carrétéro, Cécile</au><au>Chanthbouala, André</au><au>Falcone, Donato Francesco</au><au>Offrein, Bert Jan</au><au>Bégon-Lours, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-10-14</date><risdate>2023</risdate><volume>38</volume><issue>19</issue><spage>4335</spage><epage>4344</epage><pages>4335-4344</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Ferroelectric Tunnel Junctions (FTJs) are a candidate for the hardware realization of synapses in artificial neural networks. The fabrication process for a 784 × 100 crossbar array of 500 nm large FTJs, exhibiting effective On/Off currents ratio in the range 50–100, is presented. First, the epitaxial 4 nm-BiFeO 3 /Ca 0.96 Ce 0.04 MnO 3 //YAlO 3 is combined with Ni electrodes. The oxidation of Ni during the processing affects the polarity of the FTJ and the On/Off ratio, which becomes comparable to that of CMOS-compatible HfZrO 4 junctions. The latter have a wider coercive field distribution: consequently, in test crossbar arrays, BiFeO 3 exhibits a smaller cross-talk than HfZrO 4 . Furthermore, the relatively larger threshold for ferroelectric switching in BiFeO 3 allows the use application of half-programming schemes for supervised and unsupervised learning. Second, the heterostructure is combined with W and Pt electrodes. The design is optimized for the controlled collapse chip connection to neuromorphic circuits. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-023-01158-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-7901-3909</orcidid><orcidid>https://orcid.org/0009-0005-8732-3826</orcidid><orcidid>https://orcid.org/0000-0001-8468-9105</orcidid><orcidid>https://orcid.org/0000-0003-2520-3317</orcidid><orcidid>https://orcid.org/0000-0001-6082-0068</orcidid><orcidid>https://orcid.org/0000-0002-7328-9621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2023-10, Vol.38 (19), p.4335-4344
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2879581132
source SpringerLink Journals - AutoHoldings
subjects Applied and Technical Physics
Arrays
Artificial neural networks
Biomaterials
Chemistry and Materials Science
Circuit design
Coercivity
Design optimization
Electrodes
Ferroelectric materials
Ferroelectricity
Heterostructures
Inorganic Chemistry
Invited Feature Paper
Materials Engineering
Materials research
Materials Science
Nanotechnology
Oxidation
Synapses
Tunnel junctions
Unsupervised learning
title Crossbar operation of BiFeO3/Ce–CaMnO3 ferroelectric tunnel junctions: From materials to integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossbar%20operation%20of%20BiFeO3/Ce%E2%80%93CaMnO3%20ferroelectric%20tunnel%20junctions:%20From%20materials%20to%20integration&rft.jtitle=Journal%20of%20materials%20research&rft.au=Halter,%20Mattia&rft.date=2023-10-14&rft.volume=38&rft.issue=19&rft.spage=4335&rft.epage=4344&rft.pages=4335-4344&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-023-01158-8&rft_dat=%3Cproquest_cross%3E2879581132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879581132&rft_id=info:pmid/&rfr_iscdi=true