Designing a new KBT-based binary solid solution as a candidate for dielectric energy storage materials

Dielectric energy storage capacitors offer great potential in pulsed power devices due to the high power density and fast charging-discharging rate. Designing a host material with high field-induced polarization is of importance for developing dielectric energy storage materials via further composit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-10, Vol.134 (15)
Hauptverfasser: Chang, Ziliang, Zhu, Mankang, Li, Yexin, Zheng, Mupeng, Hou, Yudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Journal of applied physics
container_volume 134
creator Chang, Ziliang
Zhu, Mankang
Li, Yexin
Zheng, Mupeng
Hou, Yudong
description Dielectric energy storage capacitors offer great potential in pulsed power devices due to the high power density and fast charging-discharging rate. Designing a host material with high field-induced polarization is of importance for developing dielectric energy storage materials via further composition modulation. In this paper, we compare the microstructure, dielectric, and ferroelectric properties as well as the energy storage performance of samples K1/2Bi1/2TiO3(KBT), 75KBT-25BiFeO3 (KBTF25), and 88KBT-12Bi0.85Nd0.15FeO3 (KBNTF12) in detail. It is found that, among three samples, sample KBNTF12 possesses the most complex local structure coexisting of a four-distortions with different polarities; meanwhile, sample KBNTF12 behaves as a strong relaxor, thus giving a high field-induced polarization. Besides, sample KBNTF12 realizes the highest electric breakdown strength Eb among three samples, which is resorted to the highest resistivity of grain boundary. Highest ΔP and Eb of sample KBNTF12 among three samples render it achieve ultrahigh stored energy density Ws of 6.94 J/cm3, high recoverable energy density Wr of 5.23 J/cm3, and high efficiency η of 75.4%. Our work suggests that 88KBT-12BNF binary composition be an optimal candidate for dielectric energy storage ceramics.
doi_str_mv 10.1063/5.0164880
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879413327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879413327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a789263225ca2d82ddbe93d0c988c8ad715956806f90eb7baf131d7693ba39223</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRxFpd-A9IXGkylY8ywFLrZ2zipq4JA8yEpoUKNMZ_L5N27ebdzXnv5h0ArjGaYdTSezZDuJ0LgU7ABCMhG84YOgUThAhuhOTyHFzkvEYIY0HlBPRPLvsh-DBADYP7gR-Pq6bT2VnY-aDTL8xx4-0498XHAHWuoNHBequLg31M0Hq3caYkb6ALLg11p8SkBwe3FUleb_IlOOtruKtjTsHXy_Nq8dYsP1_fFw_LxlDCS6O5kKSlhDCjiRXE2s5JapGRQhihLcdMslagtpfIdbzTPabY8lbSTlNJCJ2Cm8PdXYrfe5eLWsd9CrVSEcHlHNPaU6nbA2VSzDm5Xu2S39ZnFUZq1KiYOmqs7N2BzcYXPSr4B_4DzJdxkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879413327</pqid></control><display><type>article</type><title>Designing a new KBT-based binary solid solution as a candidate for dielectric energy storage materials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chang, Ziliang ; Zhu, Mankang ; Li, Yexin ; Zheng, Mupeng ; Hou, Yudong</creator><creatorcontrib>Chang, Ziliang ; Zhu, Mankang ; Li, Yexin ; Zheng, Mupeng ; Hou, Yudong</creatorcontrib><description>Dielectric energy storage capacitors offer great potential in pulsed power devices due to the high power density and fast charging-discharging rate. Designing a host material with high field-induced polarization is of importance for developing dielectric energy storage materials via further composition modulation. In this paper, we compare the microstructure, dielectric, and ferroelectric properties as well as the energy storage performance of samples K1/2Bi1/2TiO3(KBT), 75KBT-25BiFeO3 (KBTF25), and 88KBT-12Bi0.85Nd0.15FeO3 (KBNTF12) in detail. It is found that, among three samples, sample KBNTF12 possesses the most complex local structure coexisting of a four-distortions with different polarities; meanwhile, sample KBNTF12 behaves as a strong relaxor, thus giving a high field-induced polarization. Besides, sample KBNTF12 realizes the highest electric breakdown strength Eb among three samples, which is resorted to the highest resistivity of grain boundary. Highest ΔP and Eb of sample KBNTF12 among three samples render it achieve ultrahigh stored energy density Ws of 6.94 J/cm3, high recoverable energy density Wr of 5.23 J/cm3, and high efficiency η of 75.4%. Our work suggests that 88KBT-12BNF binary composition be an optimal candidate for dielectric energy storage ceramics.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0164880</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Composition ; Energy storage ; Ferroelectricity ; Flux density ; Grain boundaries ; Induced polarization ; Internal energy ; Solid solutions</subject><ispartof>Journal of applied physics, 2023-10, Vol.134 (15)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-a789263225ca2d82ddbe93d0c988c8ad715956806f90eb7baf131d7693ba39223</citedby><cites>FETCH-LOGICAL-c327t-a789263225ca2d82ddbe93d0c988c8ad715956806f90eb7baf131d7693ba39223</cites><orcidid>0000-0001-7547-5025 ; 0009-0001-3210-6518 ; 0000-0002-0981-3572 ; 0000-0003-0097-908X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0164880$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Chang, Ziliang</creatorcontrib><creatorcontrib>Zhu, Mankang</creatorcontrib><creatorcontrib>Li, Yexin</creatorcontrib><creatorcontrib>Zheng, Mupeng</creatorcontrib><creatorcontrib>Hou, Yudong</creatorcontrib><title>Designing a new KBT-based binary solid solution as a candidate for dielectric energy storage materials</title><title>Journal of applied physics</title><description>Dielectric energy storage capacitors offer great potential in pulsed power devices due to the high power density and fast charging-discharging rate. Designing a host material with high field-induced polarization is of importance for developing dielectric energy storage materials via further composition modulation. In this paper, we compare the microstructure, dielectric, and ferroelectric properties as well as the energy storage performance of samples K1/2Bi1/2TiO3(KBT), 75KBT-25BiFeO3 (KBTF25), and 88KBT-12Bi0.85Nd0.15FeO3 (KBNTF12) in detail. It is found that, among three samples, sample KBNTF12 possesses the most complex local structure coexisting of a four-distortions with different polarities; meanwhile, sample KBNTF12 behaves as a strong relaxor, thus giving a high field-induced polarization. Besides, sample KBNTF12 realizes the highest electric breakdown strength Eb among three samples, which is resorted to the highest resistivity of grain boundary. Highest ΔP and Eb of sample KBNTF12 among three samples render it achieve ultrahigh stored energy density Ws of 6.94 J/cm3, high recoverable energy density Wr of 5.23 J/cm3, and high efficiency η of 75.4%. Our work suggests that 88KBT-12BNF binary composition be an optimal candidate for dielectric energy storage ceramics.</description><subject>Composition</subject><subject>Energy storage</subject><subject>Ferroelectricity</subject><subject>Flux density</subject><subject>Grain boundaries</subject><subject>Induced polarization</subject><subject>Internal energy</subject><subject>Solid solutions</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEURYnRxFpd-A9IXGkylY8ywFLrZ2zipq4JA8yEpoUKNMZ_L5N27ebdzXnv5h0ArjGaYdTSezZDuJ0LgU7ABCMhG84YOgUThAhuhOTyHFzkvEYIY0HlBPRPLvsh-DBADYP7gR-Pq6bT2VnY-aDTL8xx4-0498XHAHWuoNHBequLg31M0Hq3caYkb6ALLg11p8SkBwe3FUleb_IlOOtruKtjTsHXy_Nq8dYsP1_fFw_LxlDCS6O5kKSlhDCjiRXE2s5JapGRQhihLcdMslagtpfIdbzTPabY8lbSTlNJCJ2Cm8PdXYrfe5eLWsd9CrVSEcHlHNPaU6nbA2VSzDm5Xu2S39ZnFUZq1KiYOmqs7N2BzcYXPSr4B_4DzJdxkw</recordid><startdate>20231021</startdate><enddate>20231021</enddate><creator>Chang, Ziliang</creator><creator>Zhu, Mankang</creator><creator>Li, Yexin</creator><creator>Zheng, Mupeng</creator><creator>Hou, Yudong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7547-5025</orcidid><orcidid>https://orcid.org/0009-0001-3210-6518</orcidid><orcidid>https://orcid.org/0000-0002-0981-3572</orcidid><orcidid>https://orcid.org/0000-0003-0097-908X</orcidid></search><sort><creationdate>20231021</creationdate><title>Designing a new KBT-based binary solid solution as a candidate for dielectric energy storage materials</title><author>Chang, Ziliang ; Zhu, Mankang ; Li, Yexin ; Zheng, Mupeng ; Hou, Yudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a789263225ca2d82ddbe93d0c988c8ad715956806f90eb7baf131d7693ba39223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composition</topic><topic>Energy storage</topic><topic>Ferroelectricity</topic><topic>Flux density</topic><topic>Grain boundaries</topic><topic>Induced polarization</topic><topic>Internal energy</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ziliang</creatorcontrib><creatorcontrib>Zhu, Mankang</creatorcontrib><creatorcontrib>Li, Yexin</creatorcontrib><creatorcontrib>Zheng, Mupeng</creatorcontrib><creatorcontrib>Hou, Yudong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ziliang</au><au>Zhu, Mankang</au><au>Li, Yexin</au><au>Zheng, Mupeng</au><au>Hou, Yudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing a new KBT-based binary solid solution as a candidate for dielectric energy storage materials</atitle><jtitle>Journal of applied physics</jtitle><date>2023-10-21</date><risdate>2023</risdate><volume>134</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Dielectric energy storage capacitors offer great potential in pulsed power devices due to the high power density and fast charging-discharging rate. Designing a host material with high field-induced polarization is of importance for developing dielectric energy storage materials via further composition modulation. In this paper, we compare the microstructure, dielectric, and ferroelectric properties as well as the energy storage performance of samples K1/2Bi1/2TiO3(KBT), 75KBT-25BiFeO3 (KBTF25), and 88KBT-12Bi0.85Nd0.15FeO3 (KBNTF12) in detail. It is found that, among three samples, sample KBNTF12 possesses the most complex local structure coexisting of a four-distortions with different polarities; meanwhile, sample KBNTF12 behaves as a strong relaxor, thus giving a high field-induced polarization. Besides, sample KBNTF12 realizes the highest electric breakdown strength Eb among three samples, which is resorted to the highest resistivity of grain boundary. Highest ΔP and Eb of sample KBNTF12 among three samples render it achieve ultrahigh stored energy density Ws of 6.94 J/cm3, high recoverable energy density Wr of 5.23 J/cm3, and high efficiency η of 75.4%. Our work suggests that 88KBT-12BNF binary composition be an optimal candidate for dielectric energy storage ceramics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0164880</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7547-5025</orcidid><orcidid>https://orcid.org/0009-0001-3210-6518</orcidid><orcidid>https://orcid.org/0000-0002-0981-3572</orcidid><orcidid>https://orcid.org/0000-0003-0097-908X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-10, Vol.134 (15)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2879413327
source AIP Journals Complete; Alma/SFX Local Collection
subjects Composition
Energy storage
Ferroelectricity
Flux density
Grain boundaries
Induced polarization
Internal energy
Solid solutions
title Designing a new KBT-based binary solid solution as a candidate for dielectric energy storage materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20a%20new%20KBT-based%20binary%20solid%20solution%20as%20a%20candidate%20for%20dielectric%20energy%20storage%20materials&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chang,%20Ziliang&rft.date=2023-10-21&rft.volume=134&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0164880&rft_dat=%3Cproquest_cross%3E2879413327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879413327&rft_id=info:pmid/&rfr_iscdi=true