Container Power Consumption Prediction Based on GBRT-PL for Edge Servers in Smart City

Edge computing and IoT devices have been widely deployed in smart city applications due to the rapid promotion and implementation of 5G communication technology. Limited by power supply and hardware computing capability, applications on edge servers are mostly deployed and run in the form of contain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2023-11, Vol.10 (21), p.1-1
Hauptverfasser: Ou, Dongyang, Jiang, Congfeng, Zheng, Meilian, Ren, Yongjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 21
container_start_page 1
container_title IEEE internet of things journal
container_volume 10
creator Ou, Dongyang
Jiang, Congfeng
Zheng, Meilian
Ren, Yongjian
description Edge computing and IoT devices have been widely deployed in smart city applications due to the rapid promotion and implementation of 5G communication technology. Limited by power supply and hardware computing capability, applications on edge servers are mostly deployed and run in the form of container micro-services to improve resource utilization. Therefore, identifying the power consumption at the container granularity is of great importance for the load scheduling and service quality assurance of edge servers. In this paper, a GBRT-PL-based container power prediction method is proposed. Performance metrics with a strong correlation between container and server power consumption are selected for power consumption modeling. To effectively suit the nonlinear relationship between container performance metrics and server power consumption, the integrated predictive capabilities of multiple regression trees and the segmented linear model of single regression tree leaf nodes are applied. The data from the experiments prove that the GBRT-PL model predicts power consumption more accurately than other models for single and multiple container groups. The highest average relative error rate in the four multi-container group tests is 6.72%, whereas the highest relative error rate in the 90% quantile is 11.66%. In addition, it can accurately predict the majority of power consumption peaks, which contributes to the precise detection of power consumption anomalies.
doi_str_mv 10.1109/JIOT.2023.3281368
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2879401623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10143546</ieee_id><sourcerecordid>2879401623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5dcfcd85433fa40d467fa85ae69260c3d5267e6bfebd0bb67ab4ff4588d35d103</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxTdGEwnyAUw8bOK5uP_bHqVBxJBABL1utt1ZUyIt7hYM395FOHCZeZO8NzP5IXRPyZBSkj-9TeerISOMDznLKFfZFeoxztJEKMWuL_QtGoSwJoTEmKS56qHPom06Uzfg8aL9jTXOYbfZdnXb4IUHW1f_cmQCWBzFZPS-ShYz7FqPx_YL8BL8HnzAdYOXG-M7XNTd4Q7dOPMdYHDuffTxMl4Vr8lsPpkWz7OkYkJ1ibSVq2wmBefOCGKFSp3JpAGVM0UqbiVTKajSQWlJWarUlMI5IbPMcmkp4X30eNq79e3PDkKn1-3ON_GkZlmaC0IV49FFT67KtyF4cHrr6_jrQVOijwT1kaA-EtRngjHzcMrUAHDhp4JLofgflh9r1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879401623</pqid></control><display><type>article</type><title>Container Power Consumption Prediction Based on GBRT-PL for Edge Servers in Smart City</title><source>IEEE Electronic Library (IEL)</source><creator>Ou, Dongyang ; Jiang, Congfeng ; Zheng, Meilian ; Ren, Yongjian</creator><creatorcontrib>Ou, Dongyang ; Jiang, Congfeng ; Zheng, Meilian ; Ren, Yongjian</creatorcontrib><description>Edge computing and IoT devices have been widely deployed in smart city applications due to the rapid promotion and implementation of 5G communication technology. Limited by power supply and hardware computing capability, applications on edge servers are mostly deployed and run in the form of container micro-services to improve resource utilization. Therefore, identifying the power consumption at the container granularity is of great importance for the load scheduling and service quality assurance of edge servers. In this paper, a GBRT-PL-based container power prediction method is proposed. Performance metrics with a strong correlation between container and server power consumption are selected for power consumption modeling. To effectively suit the nonlinear relationship between container performance metrics and server power consumption, the integrated predictive capabilities of multiple regression trees and the segmented linear model of single regression tree leaf nodes are applied. The data from the experiments prove that the GBRT-PL model predicts power consumption more accurately than other models for single and multiple container groups. The highest average relative error rate in the four multi-container group tests is 6.72%, whereas the highest relative error rate in the 90% quantile is 11.66%. In addition, it can accurately predict the majority of power consumption peaks, which contributes to the precise detection of power consumption anomalies.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3281368</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Business metrics ; Cloud computing ; Container ; Containers ; Data models ; Edge computing ; Internet of Things ; Performance measurement ; Power consumption ; Power consumption prediction ; Power demand ; Power management ; Predictive models ; Quality assurance ; Quality of service architectures ; Regression analysis ; Resource utilization ; Servers ; Smart cities ; Smart city ; Virtual machining</subject><ispartof>IEEE internet of things journal, 2023-11, Vol.10 (21), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-5dcfcd85433fa40d467fa85ae69260c3d5267e6bfebd0bb67ab4ff4588d35d103</cites><orcidid>0000-0002-0548-3254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10143546$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10143546$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ou, Dongyang</creatorcontrib><creatorcontrib>Jiang, Congfeng</creatorcontrib><creatorcontrib>Zheng, Meilian</creatorcontrib><creatorcontrib>Ren, Yongjian</creatorcontrib><title>Container Power Consumption Prediction Based on GBRT-PL for Edge Servers in Smart City</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Edge computing and IoT devices have been widely deployed in smart city applications due to the rapid promotion and implementation of 5G communication technology. Limited by power supply and hardware computing capability, applications on edge servers are mostly deployed and run in the form of container micro-services to improve resource utilization. Therefore, identifying the power consumption at the container granularity is of great importance for the load scheduling and service quality assurance of edge servers. In this paper, a GBRT-PL-based container power prediction method is proposed. Performance metrics with a strong correlation between container and server power consumption are selected for power consumption modeling. To effectively suit the nonlinear relationship between container performance metrics and server power consumption, the integrated predictive capabilities of multiple regression trees and the segmented linear model of single regression tree leaf nodes are applied. The data from the experiments prove that the GBRT-PL model predicts power consumption more accurately than other models for single and multiple container groups. The highest average relative error rate in the four multi-container group tests is 6.72%, whereas the highest relative error rate in the 90% quantile is 11.66%. In addition, it can accurately predict the majority of power consumption peaks, which contributes to the precise detection of power consumption anomalies.</description><subject>Anomalies</subject><subject>Business metrics</subject><subject>Cloud computing</subject><subject>Container</subject><subject>Containers</subject><subject>Data models</subject><subject>Edge computing</subject><subject>Internet of Things</subject><subject>Performance measurement</subject><subject>Power consumption</subject><subject>Power consumption prediction</subject><subject>Power demand</subject><subject>Power management</subject><subject>Predictive models</subject><subject>Quality assurance</subject><subject>Quality of service architectures</subject><subject>Regression analysis</subject><subject>Resource utilization</subject><subject>Servers</subject><subject>Smart cities</subject><subject>Smart city</subject><subject>Virtual machining</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwkAQxTdGEwnyAUw8bOK5uP_bHqVBxJBABL1utt1ZUyIt7hYM395FOHCZeZO8NzP5IXRPyZBSkj-9TeerISOMDznLKFfZFeoxztJEKMWuL_QtGoSwJoTEmKS56qHPom06Uzfg8aL9jTXOYbfZdnXb4IUHW1f_cmQCWBzFZPS-ShYz7FqPx_YL8BL8HnzAdYOXG-M7XNTd4Q7dOPMdYHDuffTxMl4Vr8lsPpkWz7OkYkJ1ibSVq2wmBefOCGKFSp3JpAGVM0UqbiVTKajSQWlJWarUlMI5IbPMcmkp4X30eNq79e3PDkKn1-3ON_GkZlmaC0IV49FFT67KtyF4cHrr6_jrQVOijwT1kaA-EtRngjHzcMrUAHDhp4JLofgflh9r1g</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Ou, Dongyang</creator><creator>Jiang, Congfeng</creator><creator>Zheng, Meilian</creator><creator>Ren, Yongjian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0548-3254</orcidid></search><sort><creationdate>20231101</creationdate><title>Container Power Consumption Prediction Based on GBRT-PL for Edge Servers in Smart City</title><author>Ou, Dongyang ; Jiang, Congfeng ; Zheng, Meilian ; Ren, Yongjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5dcfcd85433fa40d467fa85ae69260c3d5267e6bfebd0bb67ab4ff4588d35d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Business metrics</topic><topic>Cloud computing</topic><topic>Container</topic><topic>Containers</topic><topic>Data models</topic><topic>Edge computing</topic><topic>Internet of Things</topic><topic>Performance measurement</topic><topic>Power consumption</topic><topic>Power consumption prediction</topic><topic>Power demand</topic><topic>Power management</topic><topic>Predictive models</topic><topic>Quality assurance</topic><topic>Quality of service architectures</topic><topic>Regression analysis</topic><topic>Resource utilization</topic><topic>Servers</topic><topic>Smart cities</topic><topic>Smart city</topic><topic>Virtual machining</topic><toplevel>online_resources</toplevel><creatorcontrib>Ou, Dongyang</creatorcontrib><creatorcontrib>Jiang, Congfeng</creatorcontrib><creatorcontrib>Zheng, Meilian</creatorcontrib><creatorcontrib>Ren, Yongjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ou, Dongyang</au><au>Jiang, Congfeng</au><au>Zheng, Meilian</au><au>Ren, Yongjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Container Power Consumption Prediction Based on GBRT-PL for Edge Servers in Smart City</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>10</volume><issue>21</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Edge computing and IoT devices have been widely deployed in smart city applications due to the rapid promotion and implementation of 5G communication technology. Limited by power supply and hardware computing capability, applications on edge servers are mostly deployed and run in the form of container micro-services to improve resource utilization. Therefore, identifying the power consumption at the container granularity is of great importance for the load scheduling and service quality assurance of edge servers. In this paper, a GBRT-PL-based container power prediction method is proposed. Performance metrics with a strong correlation between container and server power consumption are selected for power consumption modeling. To effectively suit the nonlinear relationship between container performance metrics and server power consumption, the integrated predictive capabilities of multiple regression trees and the segmented linear model of single regression tree leaf nodes are applied. The data from the experiments prove that the GBRT-PL model predicts power consumption more accurately than other models for single and multiple container groups. The highest average relative error rate in the four multi-container group tests is 6.72%, whereas the highest relative error rate in the 90% quantile is 11.66%. In addition, it can accurately predict the majority of power consumption peaks, which contributes to the precise detection of power consumption anomalies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3281368</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0548-3254</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-11, Vol.10 (21), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2879401623
source IEEE Electronic Library (IEL)
subjects Anomalies
Business metrics
Cloud computing
Container
Containers
Data models
Edge computing
Internet of Things
Performance measurement
Power consumption
Power consumption prediction
Power demand
Power management
Predictive models
Quality assurance
Quality of service architectures
Regression analysis
Resource utilization
Servers
Smart cities
Smart city
Virtual machining
title Container Power Consumption Prediction Based on GBRT-PL for Edge Servers in Smart City
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Container%20Power%20Consumption%20Prediction%20Based%20on%20GBRT-PL%20for%20Edge%20Servers%20in%20Smart%20City&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ou,%20Dongyang&rft.date=2023-11-01&rft.volume=10&rft.issue=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3281368&rft_dat=%3Cproquest_RIE%3E2879401623%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879401623&rft_id=info:pmid/&rft_ieee_id=10143546&rfr_iscdi=true