Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition
Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution shou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2023-12, Vol.19 (12), p.1-9 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | IEEE transactions on industrial informatics |
container_volume | 19 |
creator | Liu, Jiayi Xu, Zhenlu Xiong, Heng Lin, Qiwen Xu, Wenjun Zhou, Zude |
description | Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution should be dynamically generated according to the recognized condition during disassembly process. In this paper, digital twin is utilized to solve robotic disassembly sequence dynamic planning under uncertain missing condition. First, the framework of the proposed method is studied and digital twin of robotic disassembly process is established. Afterwards, deep Q-learning network is utilized to solve the proposed problem. Finally, case studies are carried out to verify the effectiveness of proposed method. The results show the converged DQN model could dynamically find the optimal solutions after missing condition of component is recognized during disassembly process using less running time, compared with the other meta-heuristics algorithms. |
doi_str_mv | 10.1109/TII.2023.3253187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2879381815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10061267</ieee_id><sourcerecordid>2879381815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-84e9578283b3acc1f37cde84be6a8dcccd2a390b3b5d755cea28929007c2e06e3</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXjYxPPitKXb9mjADxKMRuHcdLsDKYEutouG_94SOHiaybz3ZiY_Qm4pDCgF_TCbTAYMGB9wJjhV8oz0qB7SEkDAee6FoCVnwC_JVUorAC6B6x5xY7_0nV0Xs18fyib6HwzFZ1u3nXfF2CebEm7q9b74wu8dBofFeB_sJosfaxuCD8tiFxqMxTxrsbM-FG8-pcN81IbGd74N1-RiYdcJb061T-bPT7PRazl9f5mMHqelY5p1pRqiFlIxxWtunaMLLl2DalhjZVXjnGuY5RpqXotGCuHQMqWZBpCOIVTI--T-uHcb2_xs6syq3cWQTxqmpOaKKiqyC44uF9uUIi7MNvqNjXtDwRxQmozSHFCaE8ocuTtGPCL-s0NFWSX5H8wrcN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879381815</pqid></control><display><type>article</type><title>Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jiayi ; Xu, Zhenlu ; Xiong, Heng ; Lin, Qiwen ; Xu, Wenjun ; Zhou, Zude</creator><creatorcontrib>Liu, Jiayi ; Xu, Zhenlu ; Xiong, Heng ; Lin, Qiwen ; Xu, Wenjun ; Zhou, Zude</creatorcontrib><description>Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution should be dynamically generated according to the recognized condition during disassembly process. In this paper, digital twin is utilized to solve robotic disassembly sequence dynamic planning under uncertain missing condition. First, the framework of the proposed method is studied and digital twin of robotic disassembly process is established. Afterwards, deep Q-learning network is utilized to solve the proposed problem. Finally, case studies are carried out to verify the effectiveness of proposed method. The results show the converged DQN model could dynamically find the optimal solutions after missing condition of component is recognized during disassembly process using less running time, compared with the other meta-heuristics algorithms.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3253187</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Behavioral sciences ; Digital twin ; Digital twins ; Disassembly sequences ; Dismantling ; End of life ; Kinematics ; Learning ; Planning ; Robot kinematics ; robotic disassembly ; sequence planning ; Service robots ; uncertainties ; Uncertainty</subject><ispartof>IEEE transactions on industrial informatics, 2023-12, Vol.19 (12), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-84e9578283b3acc1f37cde84be6a8dcccd2a390b3b5d755cea28929007c2e06e3</citedby><cites>FETCH-LOGICAL-c292t-84e9578283b3acc1f37cde84be6a8dcccd2a390b3b5d755cea28929007c2e06e3</cites><orcidid>0000-0001-9257-7154 ; 0000-0001-5370-3437 ; 0009-0009-3401-5319 ; 0009-0008-9722-0486 ; 0000-0003-2443-3444 ; 0009-0007-0580-017X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10061267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10061267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jiayi</creatorcontrib><creatorcontrib>Xu, Zhenlu</creatorcontrib><creatorcontrib>Xiong, Heng</creatorcontrib><creatorcontrib>Lin, Qiwen</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Zhou, Zude</creatorcontrib><title>Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution should be dynamically generated according to the recognized condition during disassembly process. In this paper, digital twin is utilized to solve robotic disassembly sequence dynamic planning under uncertain missing condition. First, the framework of the proposed method is studied and digital twin of robotic disassembly process is established. Afterwards, deep Q-learning network is utilized to solve the proposed problem. Finally, case studies are carried out to verify the effectiveness of proposed method. The results show the converged DQN model could dynamically find the optimal solutions after missing condition of component is recognized during disassembly process using less running time, compared with the other meta-heuristics algorithms.</description><subject>Algorithms</subject><subject>Behavioral sciences</subject><subject>Digital twin</subject><subject>Digital twins</subject><subject>Disassembly sequences</subject><subject>Dismantling</subject><subject>End of life</subject><subject>Kinematics</subject><subject>Learning</subject><subject>Planning</subject><subject>Robot kinematics</subject><subject>robotic disassembly</subject><subject>sequence planning</subject><subject>Service robots</subject><subject>uncertainties</subject><subject>Uncertainty</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXjYxPPitKXb9mjADxKMRuHcdLsDKYEutouG_94SOHiaybz3ZiY_Qm4pDCgF_TCbTAYMGB9wJjhV8oz0qB7SEkDAee6FoCVnwC_JVUorAC6B6x5xY7_0nV0Xs18fyib6HwzFZ1u3nXfF2CebEm7q9b74wu8dBofFeB_sJosfaxuCD8tiFxqMxTxrsbM-FG8-pcN81IbGd74N1-RiYdcJb061T-bPT7PRazl9f5mMHqelY5p1pRqiFlIxxWtunaMLLl2DalhjZVXjnGuY5RpqXotGCuHQMqWZBpCOIVTI--T-uHcb2_xs6syq3cWQTxqmpOaKKiqyC44uF9uUIi7MNvqNjXtDwRxQmozSHFCaE8ocuTtGPCL-s0NFWSX5H8wrcN0</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Liu, Jiayi</creator><creator>Xu, Zhenlu</creator><creator>Xiong, Heng</creator><creator>Lin, Qiwen</creator><creator>Xu, Wenjun</creator><creator>Zhou, Zude</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9257-7154</orcidid><orcidid>https://orcid.org/0000-0001-5370-3437</orcidid><orcidid>https://orcid.org/0009-0009-3401-5319</orcidid><orcidid>https://orcid.org/0009-0008-9722-0486</orcidid><orcidid>https://orcid.org/0000-0003-2443-3444</orcidid><orcidid>https://orcid.org/0009-0007-0580-017X</orcidid></search><sort><creationdate>20231201</creationdate><title>Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition</title><author>Liu, Jiayi ; Xu, Zhenlu ; Xiong, Heng ; Lin, Qiwen ; Xu, Wenjun ; Zhou, Zude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-84e9578283b3acc1f37cde84be6a8dcccd2a390b3b5d755cea28929007c2e06e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Behavioral sciences</topic><topic>Digital twin</topic><topic>Digital twins</topic><topic>Disassembly sequences</topic><topic>Dismantling</topic><topic>End of life</topic><topic>Kinematics</topic><topic>Learning</topic><topic>Planning</topic><topic>Robot kinematics</topic><topic>robotic disassembly</topic><topic>sequence planning</topic><topic>Service robots</topic><topic>uncertainties</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiayi</creatorcontrib><creatorcontrib>Xu, Zhenlu</creatorcontrib><creatorcontrib>Xiong, Heng</creatorcontrib><creatorcontrib>Lin, Qiwen</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Zhou, Zude</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jiayi</au><au>Xu, Zhenlu</au><au>Xiong, Heng</au><au>Lin, Qiwen</au><au>Xu, Wenjun</au><au>Zhou, Zude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution should be dynamically generated according to the recognized condition during disassembly process. In this paper, digital twin is utilized to solve robotic disassembly sequence dynamic planning under uncertain missing condition. First, the framework of the proposed method is studied and digital twin of robotic disassembly process is established. Afterwards, deep Q-learning network is utilized to solve the proposed problem. Finally, case studies are carried out to verify the effectiveness of proposed method. The results show the converged DQN model could dynamically find the optimal solutions after missing condition of component is recognized during disassembly process using less running time, compared with the other meta-heuristics algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3253187</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9257-7154</orcidid><orcidid>https://orcid.org/0000-0001-5370-3437</orcidid><orcidid>https://orcid.org/0009-0009-3401-5319</orcidid><orcidid>https://orcid.org/0009-0008-9722-0486</orcidid><orcidid>https://orcid.org/0000-0003-2443-3444</orcidid><orcidid>https://orcid.org/0009-0007-0580-017X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2023-12, Vol.19 (12), p.1-9 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2879381815 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Behavioral sciences Digital twin Digital twins Disassembly sequences Dismantling End of life Kinematics Learning Planning Robot kinematics robotic disassembly sequence planning Service robots uncertainties Uncertainty |
title | Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Twin-driven%20Robotic%20Disassembly%20Sequence%20Dynamic%20Planning%20under%20Uncertain%20Missing%20Condition&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Jiayi&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3253187&rft_dat=%3Cproquest_RIE%3E2879381815%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879381815&rft_id=info:pmid/&rft_ieee_id=10061267&rfr_iscdi=true |