Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition

Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution shou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-12, Vol.19 (12), p.1-9
Hauptverfasser: Liu, Jiayi, Xu, Zhenlu, Xiong, Heng, Lin, Qiwen, Xu, Wenjun, Zhou, Zude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 12
container_start_page 1
container_title IEEE transactions on industrial informatics
container_volume 19
creator Liu, Jiayi
Xu, Zhenlu
Xiong, Heng
Lin, Qiwen
Xu, Wenjun
Zhou, Zude
description Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution should be dynamically generated according to the recognized condition during disassembly process. In this paper, digital twin is utilized to solve robotic disassembly sequence dynamic planning under uncertain missing condition. First, the framework of the proposed method is studied and digital twin of robotic disassembly process is established. Afterwards, deep Q-learning network is utilized to solve the proposed problem. Finally, case studies are carried out to verify the effectiveness of proposed method. The results show the converged DQN model could dynamically find the optimal solutions after missing condition of component is recognized during disassembly process using less running time, compared with the other meta-heuristics algorithms.
doi_str_mv 10.1109/TII.2023.3253187
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2879381815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10061267</ieee_id><sourcerecordid>2879381815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-84e9578283b3acc1f37cde84be6a8dcccd2a390b3b5d755cea28929007c2e06e3</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXjYxPPitKXb9mjADxKMRuHcdLsDKYEutouG_94SOHiaybz3ZiY_Qm4pDCgF_TCbTAYMGB9wJjhV8oz0qB7SEkDAee6FoCVnwC_JVUorAC6B6x5xY7_0nV0Xs18fyib6HwzFZ1u3nXfF2CebEm7q9b74wu8dBofFeB_sJosfaxuCD8tiFxqMxTxrsbM-FG8-pcN81IbGd74N1-RiYdcJb061T-bPT7PRazl9f5mMHqelY5p1pRqiFlIxxWtunaMLLl2DalhjZVXjnGuY5RpqXotGCuHQMqWZBpCOIVTI--T-uHcb2_xs6syq3cWQTxqmpOaKKiqyC44uF9uUIi7MNvqNjXtDwRxQmozSHFCaE8ocuTtGPCL-s0NFWSX5H8wrcN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879381815</pqid></control><display><type>article</type><title>Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jiayi ; Xu, Zhenlu ; Xiong, Heng ; Lin, Qiwen ; Xu, Wenjun ; Zhou, Zude</creator><creatorcontrib>Liu, Jiayi ; Xu, Zhenlu ; Xiong, Heng ; Lin, Qiwen ; Xu, Wenjun ; Zhou, Zude</creatorcontrib><description>Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution should be dynamically generated according to the recognized condition during disassembly process. In this paper, digital twin is utilized to solve robotic disassembly sequence dynamic planning under uncertain missing condition. First, the framework of the proposed method is studied and digital twin of robotic disassembly process is established. Afterwards, deep Q-learning network is utilized to solve the proposed problem. Finally, case studies are carried out to verify the effectiveness of proposed method. The results show the converged DQN model could dynamically find the optimal solutions after missing condition of component is recognized during disassembly process using less running time, compared with the other meta-heuristics algorithms.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3253187</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Behavioral sciences ; Digital twin ; Digital twins ; Disassembly sequences ; Dismantling ; End of life ; Kinematics ; Learning ; Planning ; Robot kinematics ; robotic disassembly ; sequence planning ; Service robots ; uncertainties ; Uncertainty</subject><ispartof>IEEE transactions on industrial informatics, 2023-12, Vol.19 (12), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-84e9578283b3acc1f37cde84be6a8dcccd2a390b3b5d755cea28929007c2e06e3</citedby><cites>FETCH-LOGICAL-c292t-84e9578283b3acc1f37cde84be6a8dcccd2a390b3b5d755cea28929007c2e06e3</cites><orcidid>0000-0001-9257-7154 ; 0000-0001-5370-3437 ; 0009-0009-3401-5319 ; 0009-0008-9722-0486 ; 0000-0003-2443-3444 ; 0009-0007-0580-017X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10061267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10061267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jiayi</creatorcontrib><creatorcontrib>Xu, Zhenlu</creatorcontrib><creatorcontrib>Xiong, Heng</creatorcontrib><creatorcontrib>Lin, Qiwen</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Zhou, Zude</creatorcontrib><title>Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution should be dynamically generated according to the recognized condition during disassembly process. In this paper, digital twin is utilized to solve robotic disassembly sequence dynamic planning under uncertain missing condition. First, the framework of the proposed method is studied and digital twin of robotic disassembly process is established. Afterwards, deep Q-learning network is utilized to solve the proposed problem. Finally, case studies are carried out to verify the effectiveness of proposed method. The results show the converged DQN model could dynamically find the optimal solutions after missing condition of component is recognized during disassembly process using less running time, compared with the other meta-heuristics algorithms.</description><subject>Algorithms</subject><subject>Behavioral sciences</subject><subject>Digital twin</subject><subject>Digital twins</subject><subject>Disassembly sequences</subject><subject>Dismantling</subject><subject>End of life</subject><subject>Kinematics</subject><subject>Learning</subject><subject>Planning</subject><subject>Robot kinematics</subject><subject>robotic disassembly</subject><subject>sequence planning</subject><subject>Service robots</subject><subject>uncertainties</subject><subject>Uncertainty</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXjYxPPitKXb9mjADxKMRuHcdLsDKYEutouG_94SOHiaybz3ZiY_Qm4pDCgF_TCbTAYMGB9wJjhV8oz0qB7SEkDAee6FoCVnwC_JVUorAC6B6x5xY7_0nV0Xs18fyib6HwzFZ1u3nXfF2CebEm7q9b74wu8dBofFeB_sJosfaxuCD8tiFxqMxTxrsbM-FG8-pcN81IbGd74N1-RiYdcJb061T-bPT7PRazl9f5mMHqelY5p1pRqiFlIxxWtunaMLLl2DalhjZVXjnGuY5RpqXotGCuHQMqWZBpCOIVTI--T-uHcb2_xs6syq3cWQTxqmpOaKKiqyC44uF9uUIi7MNvqNjXtDwRxQmozSHFCaE8ocuTtGPCL-s0NFWSX5H8wrcN0</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Liu, Jiayi</creator><creator>Xu, Zhenlu</creator><creator>Xiong, Heng</creator><creator>Lin, Qiwen</creator><creator>Xu, Wenjun</creator><creator>Zhou, Zude</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9257-7154</orcidid><orcidid>https://orcid.org/0000-0001-5370-3437</orcidid><orcidid>https://orcid.org/0009-0009-3401-5319</orcidid><orcidid>https://orcid.org/0009-0008-9722-0486</orcidid><orcidid>https://orcid.org/0000-0003-2443-3444</orcidid><orcidid>https://orcid.org/0009-0007-0580-017X</orcidid></search><sort><creationdate>20231201</creationdate><title>Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition</title><author>Liu, Jiayi ; Xu, Zhenlu ; Xiong, Heng ; Lin, Qiwen ; Xu, Wenjun ; Zhou, Zude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-84e9578283b3acc1f37cde84be6a8dcccd2a390b3b5d755cea28929007c2e06e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Behavioral sciences</topic><topic>Digital twin</topic><topic>Digital twins</topic><topic>Disassembly sequences</topic><topic>Dismantling</topic><topic>End of life</topic><topic>Kinematics</topic><topic>Learning</topic><topic>Planning</topic><topic>Robot kinematics</topic><topic>robotic disassembly</topic><topic>sequence planning</topic><topic>Service robots</topic><topic>uncertainties</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiayi</creatorcontrib><creatorcontrib>Xu, Zhenlu</creatorcontrib><creatorcontrib>Xiong, Heng</creatorcontrib><creatorcontrib>Lin, Qiwen</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Zhou, Zude</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jiayi</au><au>Xu, Zhenlu</au><au>Xiong, Heng</au><au>Lin, Qiwen</au><au>Xu, Wenjun</au><au>Zhou, Zude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Disassembly is an inevitable process of recycling end-of-life products and robotic disassembly sequence planning could improve disassembly efficiency. However, missing condition of component is uncertain and it could not be pre-known before execution of disassembly process. The optimal solution should be dynamically generated according to the recognized condition during disassembly process. In this paper, digital twin is utilized to solve robotic disassembly sequence dynamic planning under uncertain missing condition. First, the framework of the proposed method is studied and digital twin of robotic disassembly process is established. Afterwards, deep Q-learning network is utilized to solve the proposed problem. Finally, case studies are carried out to verify the effectiveness of proposed method. The results show the converged DQN model could dynamically find the optimal solutions after missing condition of component is recognized during disassembly process using less running time, compared with the other meta-heuristics algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3253187</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9257-7154</orcidid><orcidid>https://orcid.org/0000-0001-5370-3437</orcidid><orcidid>https://orcid.org/0009-0009-3401-5319</orcidid><orcidid>https://orcid.org/0009-0008-9722-0486</orcidid><orcidid>https://orcid.org/0000-0003-2443-3444</orcidid><orcidid>https://orcid.org/0009-0007-0580-017X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-12, Vol.19 (12), p.1-9
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2879381815
source IEEE Electronic Library (IEL)
subjects Algorithms
Behavioral sciences
Digital twin
Digital twins
Disassembly sequences
Dismantling
End of life
Kinematics
Learning
Planning
Robot kinematics
robotic disassembly
sequence planning
Service robots
uncertainties
Uncertainty
title Digital Twin-driven Robotic Disassembly Sequence Dynamic Planning under Uncertain Missing Condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Twin-driven%20Robotic%20Disassembly%20Sequence%20Dynamic%20Planning%20under%20Uncertain%20Missing%20Condition&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Jiayi&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3253187&rft_dat=%3Cproquest_RIE%3E2879381815%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879381815&rft_id=info:pmid/&rft_ieee_id=10061267&rfr_iscdi=true