Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations
The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-t...
Gespeichert in:
Veröffentlicht in: | Journal of systems science and complexity 2023-10, Vol.36 (5), p.1878-1904 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1904 |
---|---|
container_issue | 5 |
container_start_page | 1878 |
container_title | Journal of systems science and complexity |
container_volume | 36 |
creator | Ren, Xiaotao Zhao, Wenxiao Gao, Jinwu |
description | The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-triggered observations on the regulation errors. The adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions, the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically minimized. The authors also testify the theoretical results through simulation studies. |
doi_str_mv | 10.1007/s11424-023-2005-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879185271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879185271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bfb9386ce930a8dff2cd25f33b1ab73999cc02c92390f9d038f527946057d5323</originalsourceid><addsrcrecordid>eNp1kNFKwzAUhoMoOKcP4F3A6-hJ0jbN5RjTCcJAJ3oX0jaZHWs6k2yytzezglde5RC-_z-cD6FrCrcUQNwFSjOWEWCcMICc8BM0onkuiYBCnKYZQJKCsuwcXYSwBuCFhHKE3ieN3sZ2b_CzWe02Ora9w7b3eK67zvgQTeuwdg1-a40zHr8c0lcX8FcbP_Bsb1wkS9-uVsabBi-qYPz-pyNcojOrN8Fc_b5j9Ho_W07n5Gnx8DidPJGa0yKSylaSl0VtJAddNtayumG55byiuhJcSlnXwGrJuAQrG-ClzZmQWQG5aHLO-BjdDL1b33_uTIhq3e-8SysVK4WkZcJpouhA1b4PwRurtr7ttD8oCuooUA0CVRKojgIVTxk2ZEJiXbrwr_n_0DdVt3M2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879185271</pqid></control><display><type>article</type><title>Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Ren, Xiaotao ; Zhao, Wenxiao ; Gao, Jinwu</creator><creatorcontrib>Ren, Xiaotao ; Zhao, Wenxiao ; Gao, Jinwu</creatorcontrib><description>The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-triggered observations on the regulation errors. The adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions, the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically minimized. The authors also testify the theoretical results through simulation studies.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-023-2005-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive systems ; Algorithms ; Complex Systems ; Control ; Errors ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Parameter identification ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2023-10, Vol.36 (5), p.1878-1904</ispartof><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2023</rights><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bfb9386ce930a8dff2cd25f33b1ab73999cc02c92390f9d038f527946057d5323</citedby><cites>FETCH-LOGICAL-c316t-bfb9386ce930a8dff2cd25f33b1ab73999cc02c92390f9d038f527946057d5323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-023-2005-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-023-2005-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ren, Xiaotao</creatorcontrib><creatorcontrib>Zhao, Wenxiao</creatorcontrib><creatorcontrib>Gao, Jinwu</creatorcontrib><title>Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-triggered observations on the regulation errors. The adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions, the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically minimized. The authors also testify the theoretical results through simulation studies.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Errors</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Parameter identification</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kNFKwzAUhoMoOKcP4F3A6-hJ0jbN5RjTCcJAJ3oX0jaZHWs6k2yytzezglde5RC-_z-cD6FrCrcUQNwFSjOWEWCcMICc8BM0onkuiYBCnKYZQJKCsuwcXYSwBuCFhHKE3ieN3sZ2b_CzWe02Ora9w7b3eK67zvgQTeuwdg1-a40zHr8c0lcX8FcbP_Bsb1wkS9-uVsabBi-qYPz-pyNcojOrN8Fc_b5j9Ho_W07n5Gnx8DidPJGa0yKSylaSl0VtJAddNtayumG55byiuhJcSlnXwGrJuAQrG-ClzZmQWQG5aHLO-BjdDL1b33_uTIhq3e-8SysVK4WkZcJpouhA1b4PwRurtr7ttD8oCuooUA0CVRKojgIVTxk2ZEJiXbrwr_n_0DdVt3M2</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ren, Xiaotao</creator><creator>Zhao, Wenxiao</creator><creator>Gao, Jinwu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations</title><author>Ren, Xiaotao ; Zhao, Wenxiao ; Gao, Jinwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bfb9386ce930a8dff2cd25f33b1ab73999cc02c92390f9d038f527946057d5323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Errors</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Parameter identification</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiaotao</creatorcontrib><creatorcontrib>Zhao, Wenxiao</creatorcontrib><creatorcontrib>Gao, Jinwu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiaotao</au><au>Zhao, Wenxiao</au><au>Gao, Jinwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>36</volume><issue>5</issue><spage>1878</spage><epage>1904</epage><pages>1878-1904</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-triggered observations on the regulation errors. The adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions, the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically minimized. The authors also testify the theoretical results through simulation studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-023-2005-3</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2023-10, Vol.36 (5), p.1878-1904 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_2879185271 |
source | SpringerLink (Online service); Alma/SFX Local Collection |
subjects | Adaptive systems Algorithms Complex Systems Control Errors Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Parameter identification Statistics Systems Theory |
title | Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Regulation%20for%20Hammerstein%20and%20Wiener%20Systems%20with%20Event-Triggered%20Observations&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Ren,%20Xiaotao&rft.date=2023-10-01&rft.volume=36&rft.issue=5&rft.spage=1878&rft.epage=1904&rft.pages=1878-1904&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-023-2005-3&rft_dat=%3Cproquest_cross%3E2879185271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879185271&rft_id=info:pmid/&rfr_iscdi=true |