Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations

The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2023-10, Vol.36 (5), p.1878-1904
Hauptverfasser: Ren, Xiaotao, Zhao, Wenxiao, Gao, Jinwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1904
container_issue 5
container_start_page 1878
container_title Journal of systems science and complexity
container_volume 36
creator Ren, Xiaotao
Zhao, Wenxiao
Gao, Jinwu
description The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-triggered observations on the regulation errors. The adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions, the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically minimized. The authors also testify the theoretical results through simulation studies.
doi_str_mv 10.1007/s11424-023-2005-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879185271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879185271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bfb9386ce930a8dff2cd25f33b1ab73999cc02c92390f9d038f527946057d5323</originalsourceid><addsrcrecordid>eNp1kNFKwzAUhoMoOKcP4F3A6-hJ0jbN5RjTCcJAJ3oX0jaZHWs6k2yytzezglde5RC-_z-cD6FrCrcUQNwFSjOWEWCcMICc8BM0onkuiYBCnKYZQJKCsuwcXYSwBuCFhHKE3ieN3sZ2b_CzWe02Ora9w7b3eK67zvgQTeuwdg1-a40zHr8c0lcX8FcbP_Bsb1wkS9-uVsabBi-qYPz-pyNcojOrN8Fc_b5j9Ho_W07n5Gnx8DidPJGa0yKSylaSl0VtJAddNtayumG55byiuhJcSlnXwGrJuAQrG-ClzZmQWQG5aHLO-BjdDL1b33_uTIhq3e-8SysVK4WkZcJpouhA1b4PwRurtr7ttD8oCuooUA0CVRKojgIVTxk2ZEJiXbrwr_n_0DdVt3M2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879185271</pqid></control><display><type>article</type><title>Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Ren, Xiaotao ; Zhao, Wenxiao ; Gao, Jinwu</creator><creatorcontrib>Ren, Xiaotao ; Zhao, Wenxiao ; Gao, Jinwu</creatorcontrib><description>The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-triggered observations on the regulation errors. The adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions, the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically minimized. The authors also testify the theoretical results through simulation studies.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-023-2005-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive systems ; Algorithms ; Complex Systems ; Control ; Errors ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Parameter identification ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2023-10, Vol.36 (5), p.1878-1904</ispartof><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2023</rights><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bfb9386ce930a8dff2cd25f33b1ab73999cc02c92390f9d038f527946057d5323</citedby><cites>FETCH-LOGICAL-c316t-bfb9386ce930a8dff2cd25f33b1ab73999cc02c92390f9d038f527946057d5323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-023-2005-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-023-2005-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ren, Xiaotao</creatorcontrib><creatorcontrib>Zhao, Wenxiao</creatorcontrib><creatorcontrib>Gao, Jinwu</creatorcontrib><title>Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-triggered observations on the regulation errors. The adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions, the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically minimized. The authors also testify the theoretical results through simulation studies.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Errors</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Parameter identification</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kNFKwzAUhoMoOKcP4F3A6-hJ0jbN5RjTCcJAJ3oX0jaZHWs6k2yytzezglde5RC-_z-cD6FrCrcUQNwFSjOWEWCcMICc8BM0onkuiYBCnKYZQJKCsuwcXYSwBuCFhHKE3ieN3sZ2b_CzWe02Ora9w7b3eK67zvgQTeuwdg1-a40zHr8c0lcX8FcbP_Bsb1wkS9-uVsabBi-qYPz-pyNcojOrN8Fc_b5j9Ho_W07n5Gnx8DidPJGa0yKSylaSl0VtJAddNtayumG55byiuhJcSlnXwGrJuAQrG-ClzZmQWQG5aHLO-BjdDL1b33_uTIhq3e-8SysVK4WkZcJpouhA1b4PwRurtr7ttD8oCuooUA0CVRKojgIVTxk2ZEJiXbrwr_n_0DdVt3M2</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ren, Xiaotao</creator><creator>Zhao, Wenxiao</creator><creator>Gao, Jinwu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations</title><author>Ren, Xiaotao ; Zhao, Wenxiao ; Gao, Jinwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bfb9386ce930a8dff2cd25f33b1ab73999cc02c92390f9d038f527946057d5323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Errors</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Parameter identification</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiaotao</creatorcontrib><creatorcontrib>Zhao, Wenxiao</creatorcontrib><creatorcontrib>Gao, Jinwu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiaotao</au><au>Zhao, Wenxiao</au><au>Gao, Jinwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>36</volume><issue>5</issue><spage>1878</spage><epage>1904</epage><pages>1878-1904</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-triggered observations on the regulation errors. The adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions, the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically minimized. The authors also testify the theoretical results through simulation studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-023-2005-3</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2023-10, Vol.36 (5), p.1878-1904
issn 1009-6124
1559-7067
language eng
recordid cdi_proquest_journals_2879185271
source SpringerLink (Online service); Alma/SFX Local Collection
subjects Adaptive systems
Algorithms
Complex Systems
Control
Errors
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Parameter identification
Statistics
Systems Theory
title Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Regulation%20for%20Hammerstein%20and%20Wiener%20Systems%20with%20Event-Triggered%20Observations&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Ren,%20Xiaotao&rft.date=2023-10-01&rft.volume=36&rft.issue=5&rft.spage=1878&rft.epage=1904&rft.pages=1878-1904&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-023-2005-3&rft_dat=%3Cproquest_cross%3E2879185271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879185271&rft_id=info:pmid/&rfr_iscdi=true