Fractional Order Iteration for Gradient Descent Method Based on Event-Triggered Mechanism

In this work, a novel gradient descent method based on event-triggered strategy has been proposed, which involves integer and fractional order iteration. Firstly, the convergence of integer order iterative optimization method and the stability of its associated system with integrator dynamics are li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2023-10, Vol.36 (5), p.1927-1948
Hauptverfasser: Lu, Jiajie, Wang, Yong, Fan, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1948
container_issue 5
container_start_page 1927
container_title Journal of systems science and complexity
container_volume 36
creator Lu, Jiajie
Wang, Yong
Fan, Yuan
description In this work, a novel gradient descent method based on event-triggered strategy has been proposed, which involves integer and fractional order iteration. Firstly, the convergence of integer order iterative optimization method and the stability of its associated system with integrator dynamics are linked. Based on this result, a fractional order iteration approach has been developed by modelling the system with fractional order dynamics. Secondly, to reduce the comsumption of computation, a feedback based event-triggered mechanism has been introduced to the gradient descent method. The convergence of this new event-triggered optimization algorithm is guaranteed by using a Lyapunov method, and Zeno behavior is proved to be avoided simultaneously. Lastly, the effectiveness and advantages of the proposed algorithms are verified by numerical simulations.
doi_str_mv 10.1007/s11424-023-2028-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879179246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879179246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-e1445c431488439ed1210c21ca8f8b6b1bb931f57685a223dac1a7c6cbcab2b23</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EEqXwA9giMRv8XhzHHqG0pVKrLmVgshzHaVO1SbFTJP49joLExHRPp-9OekfIPbBHYCx_CgAcOWWYUmQoqbogI8gyRXMm8st4M6aoAOTX5CaEPWOpUEyOyMfMG9vVbWMOydqXzieLznnTO0nV-mTuTVm7pkteXbC9rly3a8vkxQRXJhGafkWXbny93TofrZWzO9PU4XhLripzCO7uV8fkfTbdTN7ocj1fTJ6X1KKQHXXAeWZ5ClxKnipXAgKzCNbIShaigKJQKVRZLmRmENPSWDC5FbawpsAC0zF5GHpPvv08u9DpfXv28Z-gUeYKcoVcRAoGyvo2BO8qffL10fhvDUz3C-phQR0X1P2CWsUMDpkQ2Sa-99f8f-gH5kVzHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879179246</pqid></control><display><type>article</type><title>Fractional Order Iteration for Gradient Descent Method Based on Event-Triggered Mechanism</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Jiajie ; Wang, Yong ; Fan, Yuan</creator><creatorcontrib>Lu, Jiajie ; Wang, Yong ; Fan, Yuan</creatorcontrib><description>In this work, a novel gradient descent method based on event-triggered strategy has been proposed, which involves integer and fractional order iteration. Firstly, the convergence of integer order iterative optimization method and the stability of its associated system with integrator dynamics are linked. Based on this result, a fractional order iteration approach has been developed by modelling the system with fractional order dynamics. Secondly, to reduce the comsumption of computation, a feedback based event-triggered mechanism has been introduced to the gradient descent method. The convergence of this new event-triggered optimization algorithm is guaranteed by using a Lyapunov method, and Zeno behavior is proved to be avoided simultaneously. Lastly, the effectiveness and advantages of the proposed algorithms are verified by numerical simulations.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-023-2028-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Complex Systems ; Control ; Convergence ; Dynamic stability ; Integers ; Iterative methods ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Optimization ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2023-10, Vol.36 (5), p.1927-1948</ispartof><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2023</rights><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-e1445c431488439ed1210c21ca8f8b6b1bb931f57685a223dac1a7c6cbcab2b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-023-2028-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-023-2028-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Jiajie</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Fan, Yuan</creatorcontrib><title>Fractional Order Iteration for Gradient Descent Method Based on Event-Triggered Mechanism</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>In this work, a novel gradient descent method based on event-triggered strategy has been proposed, which involves integer and fractional order iteration. Firstly, the convergence of integer order iterative optimization method and the stability of its associated system with integrator dynamics are linked. Based on this result, a fractional order iteration approach has been developed by modelling the system with fractional order dynamics. Secondly, to reduce the comsumption of computation, a feedback based event-triggered mechanism has been introduced to the gradient descent method. The convergence of this new event-triggered optimization algorithm is guaranteed by using a Lyapunov method, and Zeno behavior is proved to be avoided simultaneously. Lastly, the effectiveness and advantages of the proposed algorithms are verified by numerical simulations.</description><subject>Algorithms</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Convergence</subject><subject>Dynamic stability</subject><subject>Integers</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EEqXwA9giMRv8XhzHHqG0pVKrLmVgshzHaVO1SbFTJP49joLExHRPp-9OekfIPbBHYCx_CgAcOWWYUmQoqbogI8gyRXMm8st4M6aoAOTX5CaEPWOpUEyOyMfMG9vVbWMOydqXzieLznnTO0nV-mTuTVm7pkteXbC9rly3a8vkxQRXJhGafkWXbny93TofrZWzO9PU4XhLripzCO7uV8fkfTbdTN7ocj1fTJ6X1KKQHXXAeWZ5ClxKnipXAgKzCNbIShaigKJQKVRZLmRmENPSWDC5FbawpsAC0zF5GHpPvv08u9DpfXv28Z-gUeYKcoVcRAoGyvo2BO8qffL10fhvDUz3C-phQR0X1P2CWsUMDpkQ2Sa-99f8f-gH5kVzHA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lu, Jiajie</creator><creator>Wang, Yong</creator><creator>Fan, Yuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Fractional Order Iteration for Gradient Descent Method Based on Event-Triggered Mechanism</title><author>Lu, Jiajie ; Wang, Yong ; Fan, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-e1445c431488439ed1210c21ca8f8b6b1bb931f57685a223dac1a7c6cbcab2b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Convergence</topic><topic>Dynamic stability</topic><topic>Integers</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jiajie</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Fan, Yuan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jiajie</au><au>Wang, Yong</au><au>Fan, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Order Iteration for Gradient Descent Method Based on Event-Triggered Mechanism</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>36</volume><issue>5</issue><spage>1927</spage><epage>1948</epage><pages>1927-1948</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>In this work, a novel gradient descent method based on event-triggered strategy has been proposed, which involves integer and fractional order iteration. Firstly, the convergence of integer order iterative optimization method and the stability of its associated system with integrator dynamics are linked. Based on this result, a fractional order iteration approach has been developed by modelling the system with fractional order dynamics. Secondly, to reduce the comsumption of computation, a feedback based event-triggered mechanism has been introduced to the gradient descent method. The convergence of this new event-triggered optimization algorithm is guaranteed by using a Lyapunov method, and Zeno behavior is proved to be avoided simultaneously. Lastly, the effectiveness and advantages of the proposed algorithms are verified by numerical simulations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-023-2028-9</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2023-10, Vol.36 (5), p.1927-1948
issn 1009-6124
1559-7067
language eng
recordid cdi_proquest_journals_2879179246
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Algorithms
Complex Systems
Control
Convergence
Dynamic stability
Integers
Iterative methods
Mathematical models
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Optimization
Statistics
Systems Theory
title Fractional Order Iteration for Gradient Descent Method Based on Event-Triggered Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Order%20Iteration%20for%20Gradient%20Descent%20Method%20Based%20on%20Event-Triggered%20Mechanism&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Lu,%20Jiajie&rft.date=2023-10-01&rft.volume=36&rft.issue=5&rft.spage=1927&rft.epage=1948&rft.pages=1927-1948&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-023-2028-9&rft_dat=%3Cproquest_cross%3E2879179246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879179246&rft_id=info:pmid/&rfr_iscdi=true