Classification Aggregation without Unanimity
A classification is a surjective mapping from a set of objects to a set of categories. A classification aggregation function aggregates every vector of classifications into a single one. We show that every citizen sovereign and independent classification aggregation function is essentially a dictato...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cailloux, Olivier Hervouin, Matthieu Ozkes, Ali I M Remzi Sanver |
description | A classification is a surjective mapping from a set of objects to a set of categories. A classification aggregation function aggregates every vector of classifications into a single one. We show that every citizen sovereign and independent classification aggregation function is essentially a dictatorship. This impossibility implies an earlier result of Maniquet and Mongin (2016), who show that every unanimous and independent classification aggregation function is a dictatorship. The relationship between the two impossibilities is reminiscent to the relationship between Wilson's and Arrow's impossibilities in preference aggregation. Moreover, while the Maniquet-Mongin impossibility rests on the existence of at least three categories, we propose an alternative proof technique that covers the case of two categories, except when the number of objects is also two. We also identify all independent and unanimous classification aggregation functions for the case of two categories and two objects. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878920308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878920308</sourcerecordid><originalsourceid>FETCH-proquest_journals_28789203083</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcc5JLC7OTMtMTizJzM9TcExPL0pNh7DLM0sy8ktLFELzEvMyczNLKnkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwtzC0sjA2MDCmDhVANI6MlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878920308</pqid></control><display><type>article</type><title>Classification Aggregation without Unanimity</title><source>Free E- Journals</source><creator>Cailloux, Olivier ; Hervouin, Matthieu ; Ozkes, Ali I ; M Remzi Sanver</creator><creatorcontrib>Cailloux, Olivier ; Hervouin, Matthieu ; Ozkes, Ali I ; M Remzi Sanver</creatorcontrib><description>A classification is a surjective mapping from a set of objects to a set of categories. A classification aggregation function aggregates every vector of classifications into a single one. We show that every citizen sovereign and independent classification aggregation function is essentially a dictatorship. This impossibility implies an earlier result of Maniquet and Mongin (2016), who show that every unanimous and independent classification aggregation function is a dictatorship. The relationship between the two impossibilities is reminiscent to the relationship between Wilson's and Arrow's impossibilities in preference aggregation. Moreover, while the Maniquet-Mongin impossibility rests on the existence of at least three categories, we propose an alternative proof technique that covers the case of two categories, except when the number of objects is also two. We also identify all independent and unanimous classification aggregation functions for the case of two categories and two objects.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Classification</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cailloux, Olivier</creatorcontrib><creatorcontrib>Hervouin, Matthieu</creatorcontrib><creatorcontrib>Ozkes, Ali I</creatorcontrib><creatorcontrib>M Remzi Sanver</creatorcontrib><title>Classification Aggregation without Unanimity</title><title>arXiv.org</title><description>A classification is a surjective mapping from a set of objects to a set of categories. A classification aggregation function aggregates every vector of classifications into a single one. We show that every citizen sovereign and independent classification aggregation function is essentially a dictatorship. This impossibility implies an earlier result of Maniquet and Mongin (2016), who show that every unanimous and independent classification aggregation function is a dictatorship. The relationship between the two impossibilities is reminiscent to the relationship between Wilson's and Arrow's impossibilities in preference aggregation. Moreover, while the Maniquet-Mongin impossibility rests on the existence of at least three categories, we propose an alternative proof technique that covers the case of two categories, except when the number of objects is also two. We also identify all independent and unanimous classification aggregation functions for the case of two categories and two objects.</description><subject>Categories</subject><subject>Classification</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcc5JLC7OTMtMTizJzM9TcExPL0pNh7DLM0sy8ktLFELzEvMyczNLKnkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwtzC0sjA2MDCmDhVANI6MlU</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Cailloux, Olivier</creator><creator>Hervouin, Matthieu</creator><creator>Ozkes, Ali I</creator><creator>M Remzi Sanver</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231018</creationdate><title>Classification Aggregation without Unanimity</title><author>Cailloux, Olivier ; Hervouin, Matthieu ; Ozkes, Ali I ; M Remzi Sanver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28789203083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Categories</topic><topic>Classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Cailloux, Olivier</creatorcontrib><creatorcontrib>Hervouin, Matthieu</creatorcontrib><creatorcontrib>Ozkes, Ali I</creatorcontrib><creatorcontrib>M Remzi Sanver</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cailloux, Olivier</au><au>Hervouin, Matthieu</au><au>Ozkes, Ali I</au><au>M Remzi Sanver</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Classification Aggregation without Unanimity</atitle><jtitle>arXiv.org</jtitle><date>2023-10-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>A classification is a surjective mapping from a set of objects to a set of categories. A classification aggregation function aggregates every vector of classifications into a single one. We show that every citizen sovereign and independent classification aggregation function is essentially a dictatorship. This impossibility implies an earlier result of Maniquet and Mongin (2016), who show that every unanimous and independent classification aggregation function is a dictatorship. The relationship between the two impossibilities is reminiscent to the relationship between Wilson's and Arrow's impossibilities in preference aggregation. Moreover, while the Maniquet-Mongin impossibility rests on the existence of at least three categories, we propose an alternative proof technique that covers the case of two categories, except when the number of objects is also two. We also identify all independent and unanimous classification aggregation functions for the case of two categories and two objects.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2878920308 |
source | Free E- Journals |
subjects | Categories Classification |
title | Classification Aggregation without Unanimity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Classification%20Aggregation%20without%20Unanimity&rft.jtitle=arXiv.org&rft.au=Cailloux,%20Olivier&rft.date=2023-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878920308%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878920308&rft_id=info:pmid/&rfr_iscdi=true |