Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scaling of Texts with Large Language Models
Existing text scaling methods often require a large corpus, struggle with short texts, or require labeled data. We develop a text scaling method that leverages the pattern recognition capabilities of generative large language models (LLMs). Specifically, we propose concept-guided chain-of-thought (C...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wu, Patrick Y Nagler, Jonathan Tucker, Joshua A Messing, Solomon |
description | Existing text scaling methods often require a large corpus, struggle with short texts, or require labeled data. We develop a text scaling method that leverages the pattern recognition capabilities of generative large language models (LLMs). Specifically, we propose concept-guided chain-of-thought (CGCoT), which uses prompts designed to summarize ideas and identify target parties in texts to generate concept-specific breakdowns, in many ways similar to guidance for human coder content analysis. CGCoT effectively shifts pairwise text comparisons from a reasoning problem to a pattern recognition problem. We then pairwise compare concept-specific breakdowns using an LLM. We use the results of these pairwise comparisons to estimate a scale using the Bradley-Terry model. We use this approach to scale affective speech on Twitter. Our measures correlate more strongly with human judgments than alternative approaches like Wordfish. Besides a small set of pilot data to develop the CGCoT prompts, our measures require no additional labeled data and produce binary predictions comparable to a RoBERTa-Large model fine-tuned on thousands of human-labeled tweets. We demonstrate how combining substantive knowledge with LLMs can create state-of-the-art measures of abstract concepts. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878917361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878917361</sourcerecordid><originalsourceid>FETCH-proquest_journals_28789173613</originalsourceid><addsrcrecordid>eNqNissKwjAURIMgKNp_uOA60CZq67r4WCgIdl9Cm7QpbW7NA_18K_gBbmaGc2ZGlozzhGZbxhYkcq6L45jtU7bb8SUZcjSVHD09B13LGvJWaENR0aLF0LQe7haH0WvTgEILd6HtSzsJ-USF1Q4NPCrRfz0qKOTbO3hp38JV2EZOaZogpnHDWvZuTeZK9E5Gv16RzelY5Bc6WnwG6XzZYbBmUiXL0uyQpHyf8P9eH6vOSV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878917361</pqid></control><display><type>article</type><title>Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scaling of Texts with Large Language Models</title><source>Free E- Journals</source><creator>Wu, Patrick Y ; Nagler, Jonathan ; Tucker, Joshua A ; Messing, Solomon</creator><creatorcontrib>Wu, Patrick Y ; Nagler, Jonathan ; Tucker, Joshua A ; Messing, Solomon</creatorcontrib><description>Existing text scaling methods often require a large corpus, struggle with short texts, or require labeled data. We develop a text scaling method that leverages the pattern recognition capabilities of generative large language models (LLMs). Specifically, we propose concept-guided chain-of-thought (CGCoT), which uses prompts designed to summarize ideas and identify target parties in texts to generate concept-specific breakdowns, in many ways similar to guidance for human coder content analysis. CGCoT effectively shifts pairwise text comparisons from a reasoning problem to a pattern recognition problem. We then pairwise compare concept-specific breakdowns using an LLM. We use the results of these pairwise comparisons to estimate a scale using the Bradley-Terry model. We use this approach to scale affective speech on Twitter. Our measures correlate more strongly with human judgments than alternative approaches like Wordfish. Besides a small set of pilot data to develop the CGCoT prompts, our measures require no additional labeled data and produce binary predictions comparable to a RoBERTa-Large model fine-tuned on thousands of human-labeled tweets. We demonstrate how combining substantive knowledge with LLMs can create state-of-the-art measures of abstract concepts.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Breakdown ; Content analysis ; Large language models ; Pattern recognition ; Scaling ; Target recognition ; Texts</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wu, Patrick Y</creatorcontrib><creatorcontrib>Nagler, Jonathan</creatorcontrib><creatorcontrib>Tucker, Joshua A</creatorcontrib><creatorcontrib>Messing, Solomon</creatorcontrib><title>Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scaling of Texts with Large Language Models</title><title>arXiv.org</title><description>Existing text scaling methods often require a large corpus, struggle with short texts, or require labeled data. We develop a text scaling method that leverages the pattern recognition capabilities of generative large language models (LLMs). Specifically, we propose concept-guided chain-of-thought (CGCoT), which uses prompts designed to summarize ideas and identify target parties in texts to generate concept-specific breakdowns, in many ways similar to guidance for human coder content analysis. CGCoT effectively shifts pairwise text comparisons from a reasoning problem to a pattern recognition problem. We then pairwise compare concept-specific breakdowns using an LLM. We use the results of these pairwise comparisons to estimate a scale using the Bradley-Terry model. We use this approach to scale affective speech on Twitter. Our measures correlate more strongly with human judgments than alternative approaches like Wordfish. Besides a small set of pilot data to develop the CGCoT prompts, our measures require no additional labeled data and produce binary predictions comparable to a RoBERTa-Large model fine-tuned on thousands of human-labeled tweets. We demonstrate how combining substantive knowledge with LLMs can create state-of-the-art measures of abstract concepts.</description><subject>Breakdown</subject><subject>Content analysis</subject><subject>Large language models</subject><subject>Pattern recognition</subject><subject>Scaling</subject><subject>Target recognition</subject><subject>Texts</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAURIMgKNp_uOA60CZq67r4WCgIdl9Cm7QpbW7NA_18K_gBbmaGc2ZGlozzhGZbxhYkcq6L45jtU7bb8SUZcjSVHD09B13LGvJWaENR0aLF0LQe7haH0WvTgEILd6HtSzsJ-USF1Q4NPCrRfz0qKOTbO3hp38JV2EZOaZogpnHDWvZuTeZK9E5Gv16RzelY5Bc6WnwG6XzZYbBmUiXL0uyQpHyf8P9eH6vOSV0</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Wu, Patrick Y</creator><creator>Nagler, Jonathan</creator><creator>Tucker, Joshua A</creator><creator>Messing, Solomon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231018</creationdate><title>Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scaling of Texts with Large Language Models</title><author>Wu, Patrick Y ; Nagler, Jonathan ; Tucker, Joshua A ; Messing, Solomon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28789173613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Breakdown</topic><topic>Content analysis</topic><topic>Large language models</topic><topic>Pattern recognition</topic><topic>Scaling</topic><topic>Target recognition</topic><topic>Texts</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Patrick Y</creatorcontrib><creatorcontrib>Nagler, Jonathan</creatorcontrib><creatorcontrib>Tucker, Joshua A</creatorcontrib><creatorcontrib>Messing, Solomon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Patrick Y</au><au>Nagler, Jonathan</au><au>Tucker, Joshua A</au><au>Messing, Solomon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scaling of Texts with Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2023-10-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Existing text scaling methods often require a large corpus, struggle with short texts, or require labeled data. We develop a text scaling method that leverages the pattern recognition capabilities of generative large language models (LLMs). Specifically, we propose concept-guided chain-of-thought (CGCoT), which uses prompts designed to summarize ideas and identify target parties in texts to generate concept-specific breakdowns, in many ways similar to guidance for human coder content analysis. CGCoT effectively shifts pairwise text comparisons from a reasoning problem to a pattern recognition problem. We then pairwise compare concept-specific breakdowns using an LLM. We use the results of these pairwise comparisons to estimate a scale using the Bradley-Terry model. We use this approach to scale affective speech on Twitter. Our measures correlate more strongly with human judgments than alternative approaches like Wordfish. Besides a small set of pilot data to develop the CGCoT prompts, our measures require no additional labeled data and produce binary predictions comparable to a RoBERTa-Large model fine-tuned on thousands of human-labeled tweets. We demonstrate how combining substantive knowledge with LLMs can create state-of-the-art measures of abstract concepts.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2878917361 |
source | Free E- Journals |
subjects | Breakdown Content analysis Large language models Pattern recognition Scaling Target recognition Texts |
title | Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scaling of Texts with Large Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Concept-Guided%20Chain-of-Thought%20Prompting%20for%20Pairwise%20Comparison%20Scaling%20of%20Texts%20with%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Wu,%20Patrick%20Y&rft.date=2023-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878917361%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878917361&rft_id=info:pmid/&rfr_iscdi=true |