Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation

Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable and sustainable energy 2023-09, Vol.15 (5)
Hauptverfasser: Gong, Mingju, Li, Wenxiang, Yan, Changcheng, Liu, Yan, Li, Sheng, Zhao, Zhixuan, Xu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of renewable and sustainable energy
container_volume 15
creator Gong, Mingju
Li, Wenxiang
Yan, Changcheng
Liu, Yan
Li, Sheng
Zhao, Zhixuan
Xu, Wei
description Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.
doi_str_mv 10.1063/5.0166061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878883417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878883417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-73553c0334997f52bca15d2c6860c5abcc7e4b4badcae93e1b5bf40d019b1f903</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk9Kt-dhsdo9S_CgUPah4XJLsbEndJjVJLfrrXdsePHmaF-bhGeZF6JySMSUFvxZjQouCFPQADWiV00wSyg7_5GN0EuOCkIIRwQYI3qxr8MpvIODWBzAqJuvmWKsIDfYOP0-mj5BGOMAnhGh1B9i6mJQzgJ0PS9XZb5WsdyOsetO785sOmjngxvamrtvuTtFRq7oIZ_s5RK93ty-Th2z2dD-d3Mwyw5lMmeRCcEM4z6tKtoJpo6homCnKghihtDEScp1r1RgFFQeqhW5z0hBaadpWhA_Rxc67Cv5jDTHVC78Orj9Zs1KWZclzKnvqckeZ4GMM0NarYJcqfNWU1L8t1qLet9izVzs2Gpu2v_wD_wBhCnKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878883417</pqid></control><display><type>article</type><title>Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation</title><source>AIP Journals Complete</source><creator>Gong, Mingju ; Li, Wenxiang ; Yan, Changcheng ; Liu, Yan ; Li, Sheng ; Zhao, Zhixuan ; Xu, Wei</creator><creatorcontrib>Gong, Mingju ; Li, Wenxiang ; Yan, Changcheng ; Liu, Yan ; Li, Sheng ; Zhao, Zhixuan ; Xu, Wei</creatorcontrib><description>Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.</description><identifier>ISSN: 1941-7012</identifier><identifier>EISSN: 1941-7012</identifier><identifier>DOI: 10.1063/5.0166061</identifier><identifier>CODEN: JRSEBH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Clean energy ; Distillation ; Forecasting ; Mathematical models ; Source code ; Time series ; Wind power generation</subject><ispartof>Journal of renewable and sustainable energy, 2023-09, Vol.15 (5)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-73553c0334997f52bca15d2c6860c5abcc7e4b4badcae93e1b5bf40d019b1f903</citedby><cites>FETCH-LOGICAL-c327t-73553c0334997f52bca15d2c6860c5abcc7e4b4badcae93e1b5bf40d019b1f903</cites><orcidid>0009-0006-3605-7115 ; 0000-0002-0685-9524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jrse/article-lookup/doi/10.1063/5.0166061$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Gong, Mingju</creatorcontrib><creatorcontrib>Li, Wenxiang</creatorcontrib><creatorcontrib>Yan, Changcheng</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Zhao, Zhixuan</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><title>Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation</title><title>Journal of renewable and sustainable energy</title><description>Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.</description><subject>Algorithms</subject><subject>Clean energy</subject><subject>Distillation</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Source code</subject><subject>Time series</subject><subject>Wind power generation</subject><issn>1941-7012</issn><issn>1941-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk9Kt-dhsdo9S_CgUPah4XJLsbEndJjVJLfrrXdsePHmaF-bhGeZF6JySMSUFvxZjQouCFPQADWiV00wSyg7_5GN0EuOCkIIRwQYI3qxr8MpvIODWBzAqJuvmWKsIDfYOP0-mj5BGOMAnhGh1B9i6mJQzgJ0PS9XZb5WsdyOsetO785sOmjngxvamrtvuTtFRq7oIZ_s5RK93ty-Th2z2dD-d3Mwyw5lMmeRCcEM4z6tKtoJpo6homCnKghihtDEScp1r1RgFFQeqhW5z0hBaadpWhA_Rxc67Cv5jDTHVC78Orj9Zs1KWZclzKnvqckeZ4GMM0NarYJcqfNWU1L8t1qLet9izVzs2Gpu2v_wD_wBhCnKV</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Gong, Mingju</creator><creator>Li, Wenxiang</creator><creator>Yan, Changcheng</creator><creator>Liu, Yan</creator><creator>Li, Sheng</creator><creator>Zhao, Zhixuan</creator><creator>Xu, Wei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-3605-7115</orcidid><orcidid>https://orcid.org/0000-0002-0685-9524</orcidid></search><sort><creationdate>202309</creationdate><title>Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation</title><author>Gong, Mingju ; Li, Wenxiang ; Yan, Changcheng ; Liu, Yan ; Li, Sheng ; Zhao, Zhixuan ; Xu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-73553c0334997f52bca15d2c6860c5abcc7e4b4badcae93e1b5bf40d019b1f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Clean energy</topic><topic>Distillation</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Source code</topic><topic>Time series</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Mingju</creatorcontrib><creatorcontrib>Li, Wenxiang</creatorcontrib><creatorcontrib>Yan, Changcheng</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Zhao, Zhixuan</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of renewable and sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Mingju</au><au>Li, Wenxiang</au><au>Yan, Changcheng</au><au>Liu, Yan</au><au>Li, Sheng</au><au>Zhao, Zhixuan</au><au>Xu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation</atitle><jtitle>Journal of renewable and sustainable energy</jtitle><date>2023-09</date><risdate>2023</risdate><volume>15</volume><issue>5</issue><issn>1941-7012</issn><eissn>1941-7012</eissn><coden>JRSEBH</coden><abstract>Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0166061</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0006-3605-7115</orcidid><orcidid>https://orcid.org/0000-0002-0685-9524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1941-7012
ispartof Journal of renewable and sustainable energy, 2023-09, Vol.15 (5)
issn 1941-7012
1941-7012
language eng
recordid cdi_proquest_journals_2878883417
source AIP Journals Complete
subjects Algorithms
Clean energy
Distillation
Forecasting
Mathematical models
Source code
Time series
Wind power generation
title Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20power%20forecasting%20based%20on%20SCINet,%20reversible%20instance%20normalization,%20and%20knowledge%20distillation&rft.jtitle=Journal%20of%20renewable%20and%20sustainable%20energy&rft.au=Gong,%20Mingju&rft.date=2023-09&rft.volume=15&rft.issue=5&rft.issn=1941-7012&rft.eissn=1941-7012&rft.coden=JRSEBH&rft_id=info:doi/10.1063/5.0166061&rft_dat=%3Cproquest_cross%3E2878883417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878883417&rft_id=info:pmid/&rfr_iscdi=true