Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation
Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment...
Gespeichert in:
Veröffentlicht in: | Journal of renewable and sustainable energy 2023-09, Vol.15 (5) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of renewable and sustainable energy |
container_volume | 15 |
creator | Gong, Mingju Li, Wenxiang Yan, Changcheng Liu, Yan Li, Sheng Zhao, Zhixuan Xu, Wei |
description | Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git. |
doi_str_mv | 10.1063/5.0166061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878883417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878883417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-73553c0334997f52bca15d2c6860c5abcc7e4b4badcae93e1b5bf40d019b1f903</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk9Kt-dhsdo9S_CgUPah4XJLsbEndJjVJLfrrXdsePHmaF-bhGeZF6JySMSUFvxZjQouCFPQADWiV00wSyg7_5GN0EuOCkIIRwQYI3qxr8MpvIODWBzAqJuvmWKsIDfYOP0-mj5BGOMAnhGh1B9i6mJQzgJ0PS9XZb5WsdyOsetO785sOmjngxvamrtvuTtFRq7oIZ_s5RK93ty-Th2z2dD-d3Mwyw5lMmeRCcEM4z6tKtoJpo6homCnKghihtDEScp1r1RgFFQeqhW5z0hBaadpWhA_Rxc67Cv5jDTHVC78Orj9Zs1KWZclzKnvqckeZ4GMM0NarYJcqfNWU1L8t1qLet9izVzs2Gpu2v_wD_wBhCnKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878883417</pqid></control><display><type>article</type><title>Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation</title><source>AIP Journals Complete</source><creator>Gong, Mingju ; Li, Wenxiang ; Yan, Changcheng ; Liu, Yan ; Li, Sheng ; Zhao, Zhixuan ; Xu, Wei</creator><creatorcontrib>Gong, Mingju ; Li, Wenxiang ; Yan, Changcheng ; Liu, Yan ; Li, Sheng ; Zhao, Zhixuan ; Xu, Wei</creatorcontrib><description>Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.</description><identifier>ISSN: 1941-7012</identifier><identifier>EISSN: 1941-7012</identifier><identifier>DOI: 10.1063/5.0166061</identifier><identifier>CODEN: JRSEBH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Clean energy ; Distillation ; Forecasting ; Mathematical models ; Source code ; Time series ; Wind power generation</subject><ispartof>Journal of renewable and sustainable energy, 2023-09, Vol.15 (5)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-73553c0334997f52bca15d2c6860c5abcc7e4b4badcae93e1b5bf40d019b1f903</citedby><cites>FETCH-LOGICAL-c327t-73553c0334997f52bca15d2c6860c5abcc7e4b4badcae93e1b5bf40d019b1f903</cites><orcidid>0009-0006-3605-7115 ; 0000-0002-0685-9524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jrse/article-lookup/doi/10.1063/5.0166061$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Gong, Mingju</creatorcontrib><creatorcontrib>Li, Wenxiang</creatorcontrib><creatorcontrib>Yan, Changcheng</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Zhao, Zhixuan</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><title>Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation</title><title>Journal of renewable and sustainable energy</title><description>Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.</description><subject>Algorithms</subject><subject>Clean energy</subject><subject>Distillation</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Source code</subject><subject>Time series</subject><subject>Wind power generation</subject><issn>1941-7012</issn><issn>1941-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk9Kt-dhsdo9S_CgUPah4XJLsbEndJjVJLfrrXdsePHmaF-bhGeZF6JySMSUFvxZjQouCFPQADWiV00wSyg7_5GN0EuOCkIIRwQYI3qxr8MpvIODWBzAqJuvmWKsIDfYOP0-mj5BGOMAnhGh1B9i6mJQzgJ0PS9XZb5WsdyOsetO785sOmjngxvamrtvuTtFRq7oIZ_s5RK93ty-Th2z2dD-d3Mwyw5lMmeRCcEM4z6tKtoJpo6homCnKghihtDEScp1r1RgFFQeqhW5z0hBaadpWhA_Rxc67Cv5jDTHVC78Orj9Zs1KWZclzKnvqckeZ4GMM0NarYJcqfNWU1L8t1qLet9izVzs2Gpu2v_wD_wBhCnKV</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Gong, Mingju</creator><creator>Li, Wenxiang</creator><creator>Yan, Changcheng</creator><creator>Liu, Yan</creator><creator>Li, Sheng</creator><creator>Zhao, Zhixuan</creator><creator>Xu, Wei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-3605-7115</orcidid><orcidid>https://orcid.org/0000-0002-0685-9524</orcidid></search><sort><creationdate>202309</creationdate><title>Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation</title><author>Gong, Mingju ; Li, Wenxiang ; Yan, Changcheng ; Liu, Yan ; Li, Sheng ; Zhao, Zhixuan ; Xu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-73553c0334997f52bca15d2c6860c5abcc7e4b4badcae93e1b5bf40d019b1f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Clean energy</topic><topic>Distillation</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Source code</topic><topic>Time series</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Mingju</creatorcontrib><creatorcontrib>Li, Wenxiang</creatorcontrib><creatorcontrib>Yan, Changcheng</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Zhao, Zhixuan</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of renewable and sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Mingju</au><au>Li, Wenxiang</au><au>Yan, Changcheng</au><au>Liu, Yan</au><au>Li, Sheng</au><au>Zhao, Zhixuan</au><au>Xu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation</atitle><jtitle>Journal of renewable and sustainable energy</jtitle><date>2023-09</date><risdate>2023</risdate><volume>15</volume><issue>5</issue><issn>1941-7012</issn><eissn>1941-7012</eissn><coden>JRSEBH</coden><abstract>Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0166061</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0006-3605-7115</orcidid><orcidid>https://orcid.org/0000-0002-0685-9524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1941-7012 |
ispartof | Journal of renewable and sustainable energy, 2023-09, Vol.15 (5) |
issn | 1941-7012 1941-7012 |
language | eng |
recordid | cdi_proquest_journals_2878883417 |
source | AIP Journals Complete |
subjects | Algorithms Clean energy Distillation Forecasting Mathematical models Source code Time series Wind power generation |
title | Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20power%20forecasting%20based%20on%20SCINet,%20reversible%20instance%20normalization,%20and%20knowledge%20distillation&rft.jtitle=Journal%20of%20renewable%20and%20sustainable%20energy&rft.au=Gong,%20Mingju&rft.date=2023-09&rft.volume=15&rft.issue=5&rft.issn=1941-7012&rft.eissn=1941-7012&rft.coden=JRSEBH&rft_id=info:doi/10.1063/5.0166061&rft_dat=%3Cproquest_cross%3E2878883417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878883417&rft_id=info:pmid/&rfr_iscdi=true |