Microbial degradation mechanism of historical silk revealed by proteomics and metabolomics

Archaeological silk undergoes destructive and irreversible changes during the natural process of decay. However, in-depth studies on the influence of this biological factor are still lacking. Here, a combination of proteomics and metabolomics is proposed for the first time to explore the interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical methods 2023-10, Vol.15 (4), p.538-5389
Hauptverfasser: Pan, Lindan, Ding, Chuanmiao, Deng, Yefeng, Chen, Hao, Yang, Hailiang, Wang, Biyang, Zhou, Yang, Wang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5389
container_issue 4
container_start_page 538
container_title Analytical methods
container_volume 15
creator Pan, Lindan
Ding, Chuanmiao
Deng, Yefeng
Chen, Hao
Yang, Hailiang
Wang, Biyang
Zhou, Yang
Wang, Bing
description Archaeological silk undergoes destructive and irreversible changes during the natural process of decay. However, in-depth studies on the influence of this biological factor are still lacking. Here, a combination of proteomics and metabolomics is proposed for the first time to explore the interaction between bacteria and historical silk during biodegradation, which provides information on changes at the molecular level of proteins and bacterial metabolites. Morphological observation revealed biofilms produced by Stenotrophomonas maltophilia and Pseudomonas alcaligenes when cultured in the stationary phase and confirmed severe deterioration of silk. Proteomics showed that S. maltophilia had an unbiased effect on silk fibroin, indicating its ability to disrupt both heavy and light chains, as well as other proteins, while P. alcaligenes showed an affinity for more disordered proteins. Analysis of bacterial metabolites showed that overall activity reduction and significant accumulation of fatty acid and phenol metabolites occurred after silk addition, suggesting that the presence of silk may inhibit the activity of an individual strain. This study provides a new insight into the microbial degradation mechanism of archaeological silk. Archaeological silk undergoes destructive and irreversible changes during the natural process of decay.
doi_str_mv 10.1039/d3ay01033c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878685094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878685094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-1fb7dfa9ee7d7ceace647e99f8c2d8f6062154ec1e9871c51ade0fb958082933</originalsourceid><addsrcrecordid>eNpd0U1LAzEQBuBFFKzVi3ch4EWE1aTZzcex1E-oeOlFL0s2mdjU3U1NtkL_vWkrFTxlCM8MwztZdk7wDcFU3hqq1jhVVB9kA8JLmUvG5eG-Zvg4O4lxgTGTlJFB9v7idPC1Uw0y8BGUUb3zHWpBz1XnYou8RXMXex-cTia65hMF-AbVgEH1Gi2D78G3TkekOpP6elX7Zvtxmh1Z1UQ4-32H2ezhfjZ5yqevj8-T8TTXlBR9TmzNjVUSgBuuQWlgBQcprdAjIyzDbETKAjQBKTjRJVEGsK1lKbAYSUqH2dVubFrlawWxr1oXNTSN6sCvYjUSvBC0KGSR6OU_uvCr0KXlNkowUeKtut6pFEyMAWy1DK5VYV0RXG1Sru7o-G2b8iThix0OUe_d3xXoD4tQep0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878685094</pqid></control><display><type>article</type><title>Microbial degradation mechanism of historical silk revealed by proteomics and metabolomics</title><source>Royal Society Of Chemistry Journals</source><creator>Pan, Lindan ; Ding, Chuanmiao ; Deng, Yefeng ; Chen, Hao ; Yang, Hailiang ; Wang, Biyang ; Zhou, Yang ; Wang, Bing</creator><creatorcontrib>Pan, Lindan ; Ding, Chuanmiao ; Deng, Yefeng ; Chen, Hao ; Yang, Hailiang ; Wang, Biyang ; Zhou, Yang ; Wang, Bing</creatorcontrib><description>Archaeological silk undergoes destructive and irreversible changes during the natural process of decay. However, in-depth studies on the influence of this biological factor are still lacking. Here, a combination of proteomics and metabolomics is proposed for the first time to explore the interaction between bacteria and historical silk during biodegradation, which provides information on changes at the molecular level of proteins and bacterial metabolites. Morphological observation revealed biofilms produced by Stenotrophomonas maltophilia and Pseudomonas alcaligenes when cultured in the stationary phase and confirmed severe deterioration of silk. Proteomics showed that S. maltophilia had an unbiased effect on silk fibroin, indicating its ability to disrupt both heavy and light chains, as well as other proteins, while P. alcaligenes showed an affinity for more disordered proteins. Analysis of bacterial metabolites showed that overall activity reduction and significant accumulation of fatty acid and phenol metabolites occurred after silk addition, suggesting that the presence of silk may inhibit the activity of an individual strain. This study provides a new insight into the microbial degradation mechanism of archaeological silk. Archaeological silk undergoes destructive and irreversible changes during the natural process of decay.</description><identifier>ISSN: 1759-9660</identifier><identifier>EISSN: 1759-9679</identifier><identifier>DOI: 10.1039/d3ay01033c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alcaligenes ; Archaeology ; Bacteria ; Biodegradation ; Biofilms ; Decay ; Degradation ; Fatty acids ; Light chains ; Metabolites ; Metabolomics ; Microbial degradation ; Microorganisms ; Phenols ; Proteins ; Proteomics ; Silk ; Silk fibroin ; Stationary phase</subject><ispartof>Analytical methods, 2023-10, Vol.15 (4), p.538-5389</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-1fb7dfa9ee7d7ceace647e99f8c2d8f6062154ec1e9871c51ade0fb958082933</citedby><cites>FETCH-LOGICAL-c314t-1fb7dfa9ee7d7ceace647e99f8c2d8f6062154ec1e9871c51ade0fb958082933</cites><orcidid>0000-0002-3499-7828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pan, Lindan</creatorcontrib><creatorcontrib>Ding, Chuanmiao</creatorcontrib><creatorcontrib>Deng, Yefeng</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Yang, Hailiang</creatorcontrib><creatorcontrib>Wang, Biyang</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><title>Microbial degradation mechanism of historical silk revealed by proteomics and metabolomics</title><title>Analytical methods</title><description>Archaeological silk undergoes destructive and irreversible changes during the natural process of decay. However, in-depth studies on the influence of this biological factor are still lacking. Here, a combination of proteomics and metabolomics is proposed for the first time to explore the interaction between bacteria and historical silk during biodegradation, which provides information on changes at the molecular level of proteins and bacterial metabolites. Morphological observation revealed biofilms produced by Stenotrophomonas maltophilia and Pseudomonas alcaligenes when cultured in the stationary phase and confirmed severe deterioration of silk. Proteomics showed that S. maltophilia had an unbiased effect on silk fibroin, indicating its ability to disrupt both heavy and light chains, as well as other proteins, while P. alcaligenes showed an affinity for more disordered proteins. Analysis of bacterial metabolites showed that overall activity reduction and significant accumulation of fatty acid and phenol metabolites occurred after silk addition, suggesting that the presence of silk may inhibit the activity of an individual strain. This study provides a new insight into the microbial degradation mechanism of archaeological silk. Archaeological silk undergoes destructive and irreversible changes during the natural process of decay.</description><subject>Alcaligenes</subject><subject>Archaeology</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biofilms</subject><subject>Decay</subject><subject>Degradation</subject><subject>Fatty acids</subject><subject>Light chains</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Microbial degradation</subject><subject>Microorganisms</subject><subject>Phenols</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Silk</subject><subject>Silk fibroin</subject><subject>Stationary phase</subject><issn>1759-9660</issn><issn>1759-9679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LAzEQBuBFFKzVi3ch4EWE1aTZzcex1E-oeOlFL0s2mdjU3U1NtkL_vWkrFTxlCM8MwztZdk7wDcFU3hqq1jhVVB9kA8JLmUvG5eG-Zvg4O4lxgTGTlJFB9v7idPC1Uw0y8BGUUb3zHWpBz1XnYou8RXMXex-cTia65hMF-AbVgEH1Gi2D78G3TkekOpP6elX7Zvtxmh1Z1UQ4-32H2ezhfjZ5yqevj8-T8TTXlBR9TmzNjVUSgBuuQWlgBQcprdAjIyzDbETKAjQBKTjRJVEGsK1lKbAYSUqH2dVubFrlawWxr1oXNTSN6sCvYjUSvBC0KGSR6OU_uvCr0KXlNkowUeKtut6pFEyMAWy1DK5VYV0RXG1Sru7o-G2b8iThix0OUe_d3xXoD4tQep0</recordid><startdate>20231019</startdate><enddate>20231019</enddate><creator>Pan, Lindan</creator><creator>Ding, Chuanmiao</creator><creator>Deng, Yefeng</creator><creator>Chen, Hao</creator><creator>Yang, Hailiang</creator><creator>Wang, Biyang</creator><creator>Zhou, Yang</creator><creator>Wang, Bing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3499-7828</orcidid></search><sort><creationdate>20231019</creationdate><title>Microbial degradation mechanism of historical silk revealed by proteomics and metabolomics</title><author>Pan, Lindan ; Ding, Chuanmiao ; Deng, Yefeng ; Chen, Hao ; Yang, Hailiang ; Wang, Biyang ; Zhou, Yang ; Wang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-1fb7dfa9ee7d7ceace647e99f8c2d8f6062154ec1e9871c51ade0fb958082933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alcaligenes</topic><topic>Archaeology</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biofilms</topic><topic>Decay</topic><topic>Degradation</topic><topic>Fatty acids</topic><topic>Light chains</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Microbial degradation</topic><topic>Microorganisms</topic><topic>Phenols</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Silk</topic><topic>Silk fibroin</topic><topic>Stationary phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Lindan</creatorcontrib><creatorcontrib>Ding, Chuanmiao</creatorcontrib><creatorcontrib>Deng, Yefeng</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Yang, Hailiang</creatorcontrib><creatorcontrib>Wang, Biyang</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Lindan</au><au>Ding, Chuanmiao</au><au>Deng, Yefeng</au><au>Chen, Hao</au><au>Yang, Hailiang</au><au>Wang, Biyang</au><au>Zhou, Yang</au><au>Wang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial degradation mechanism of historical silk revealed by proteomics and metabolomics</atitle><jtitle>Analytical methods</jtitle><date>2023-10-19</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>538</spage><epage>5389</epage><pages>538-5389</pages><issn>1759-9660</issn><eissn>1759-9679</eissn><abstract>Archaeological silk undergoes destructive and irreversible changes during the natural process of decay. However, in-depth studies on the influence of this biological factor are still lacking. Here, a combination of proteomics and metabolomics is proposed for the first time to explore the interaction between bacteria and historical silk during biodegradation, which provides information on changes at the molecular level of proteins and bacterial metabolites. Morphological observation revealed biofilms produced by Stenotrophomonas maltophilia and Pseudomonas alcaligenes when cultured in the stationary phase and confirmed severe deterioration of silk. Proteomics showed that S. maltophilia had an unbiased effect on silk fibroin, indicating its ability to disrupt both heavy and light chains, as well as other proteins, while P. alcaligenes showed an affinity for more disordered proteins. Analysis of bacterial metabolites showed that overall activity reduction and significant accumulation of fatty acid and phenol metabolites occurred after silk addition, suggesting that the presence of silk may inhibit the activity of an individual strain. This study provides a new insight into the microbial degradation mechanism of archaeological silk. Archaeological silk undergoes destructive and irreversible changes during the natural process of decay.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ay01033c</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3499-7828</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-9660
ispartof Analytical methods, 2023-10, Vol.15 (4), p.538-5389
issn 1759-9660
1759-9679
language eng
recordid cdi_proquest_journals_2878685094
source Royal Society Of Chemistry Journals
subjects Alcaligenes
Archaeology
Bacteria
Biodegradation
Biofilms
Decay
Degradation
Fatty acids
Light chains
Metabolites
Metabolomics
Microbial degradation
Microorganisms
Phenols
Proteins
Proteomics
Silk
Silk fibroin
Stationary phase
title Microbial degradation mechanism of historical silk revealed by proteomics and metabolomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20degradation%20mechanism%20of%20historical%20silk%20revealed%20by%20proteomics%20and%20metabolomics&rft.jtitle=Analytical%20methods&rft.au=Pan,%20Lindan&rft.date=2023-10-19&rft.volume=15&rft.issue=4&rft.spage=538&rft.epage=5389&rft.pages=538-5389&rft.issn=1759-9660&rft.eissn=1759-9679&rft_id=info:doi/10.1039/d3ay01033c&rft_dat=%3Cproquest_cross%3E2878685094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878685094&rft_id=info:pmid/&rfr_iscdi=true