Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices
Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topolog...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2023-10, Vol.11 (20) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 11 |
creator | Tao, Liyun Liu, Yahong Zhou, Xin Du, Lianlian Li, Meize Ji, Ruonan Song, Kun Zhao, Xiaopeng |
description | Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topological insulators based on Kagome metal lattices. By stretching or rotating Kagome metal lattices, two types of topological insulators are obtained, and multi‐type topological states are observed. By stretching Kagome metal lattices, a 1D topological edge state and two types of higher‐order topological corner states (corresponding to a traditional higher‐order topological corner state based on nearest‐neighbor coupling and a new higher‐order corner state caused by long‐range interactions) are obtained in a classical quantization of dipole moments higher‐order topological insulators. By rotating Kagome metal lattices, dual‐band higher‐order valley‐Hall topological insulators are achieved with nodal ring degeneracy. Odd‐type and even‐type topological states are obtained. Achieving reconfigurable, multi‐type, and multi‐band topological insulators by using a single structural unit provides interesting insights into topological photonics and provides an unconventional approach to explore photonic systems and condensed matter physics. |
doi_str_mv | 10.1002/adom.202300986 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878570402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878570402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-25ed42b2b2cf9219a739a08334affbf20bb1636b6e7f2d5cdaf75f075fe00a293</originalsourceid><addsrcrecordid>eNpNkM9KAzEQxoMoWGqvngOet84m-_eoRW2xUsF6XrLJpN2y3axJ9tCbj-Az-iSmVESGYWbg45uPHyHXMUxjAHYrlNlPGTAOUBbZGRmxuEyjGPL4_N9-SSbO7QAgHLxM8hFRL0Prm-_Pr_WhR7o2vWnNppGipW9eeHS06ei82WzRBs3KKrT0dWu86RpJF50bWuGNdfReOFTUdPRZbMwe6Qv6YLEU3jcS3RW50KJ1OPmdY_L--LCezaPl6mkxu1tGkkPuI5aiSlgdSuoyZBYho4CC80RoXWsGdR1nPKszzDVTqVRC56mG0AggWMnH5Obk21vzMaDz1c4MtgsvK1bkRZpDEgiNyfSkktY4Z1FXvW32wh6qGKojzOoIs_qDyX8AvBxqKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878570402</pqid></control><display><type>article</type><title>Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tao, Liyun ; Liu, Yahong ; Zhou, Xin ; Du, Lianlian ; Li, Meize ; Ji, Ruonan ; Song, Kun ; Zhao, Xiaopeng</creator><creatorcontrib>Tao, Liyun ; Liu, Yahong ; Zhou, Xin ; Du, Lianlian ; Li, Meize ; Ji, Ruonan ; Song, Kun ; Zhao, Xiaopeng</creatorcontrib><description>Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topological insulators based on Kagome metal lattices. By stretching or rotating Kagome metal lattices, two types of topological insulators are obtained, and multi‐type topological states are observed. By stretching Kagome metal lattices, a 1D topological edge state and two types of higher‐order topological corner states (corresponding to a traditional higher‐order topological corner state based on nearest‐neighbor coupling and a new higher‐order corner state caused by long‐range interactions) are obtained in a classical quantization of dipole moments higher‐order topological insulators. By rotating Kagome metal lattices, dual‐band higher‐order valley‐Hall topological insulators are achieved with nodal ring degeneracy. Odd‐type and even‐type topological states are obtained. Achieving reconfigurable, multi‐type, and multi‐band topological insulators by using a single structural unit provides interesting insights into topological photonics and provides an unconventional approach to explore photonic systems and condensed matter physics.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202300986</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Condensed matter physics ; Dipole moments ; Lattices ; Materials science ; Optics ; Photonics ; Physical properties ; Rings (mathematics) ; Rotation ; Stretching ; Topological insulators</subject><ispartof>Advanced optical materials, 2023-10, Vol.11 (20)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-25ed42b2b2cf9219a739a08334affbf20bb1636b6e7f2d5cdaf75f075fe00a293</citedby><cites>FETCH-LOGICAL-c307t-25ed42b2b2cf9219a739a08334affbf20bb1636b6e7f2d5cdaf75f075fe00a293</cites><orcidid>0000-0002-5071-0065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Tao, Liyun</creatorcontrib><creatorcontrib>Liu, Yahong</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Du, Lianlian</creatorcontrib><creatorcontrib>Li, Meize</creatorcontrib><creatorcontrib>Ji, Ruonan</creatorcontrib><creatorcontrib>Song, Kun</creatorcontrib><creatorcontrib>Zhao, Xiaopeng</creatorcontrib><title>Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices</title><title>Advanced optical materials</title><description>Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topological insulators based on Kagome metal lattices. By stretching or rotating Kagome metal lattices, two types of topological insulators are obtained, and multi‐type topological states are observed. By stretching Kagome metal lattices, a 1D topological edge state and two types of higher‐order topological corner states (corresponding to a traditional higher‐order topological corner state based on nearest‐neighbor coupling and a new higher‐order corner state caused by long‐range interactions) are obtained in a classical quantization of dipole moments higher‐order topological insulators. By rotating Kagome metal lattices, dual‐band higher‐order valley‐Hall topological insulators are achieved with nodal ring degeneracy. Odd‐type and even‐type topological states are obtained. Achieving reconfigurable, multi‐type, and multi‐band topological insulators by using a single structural unit provides interesting insights into topological photonics and provides an unconventional approach to explore photonic systems and condensed matter physics.</description><subject>Condensed matter physics</subject><subject>Dipole moments</subject><subject>Lattices</subject><subject>Materials science</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical properties</subject><subject>Rings (mathematics)</subject><subject>Rotation</subject><subject>Stretching</subject><subject>Topological insulators</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9KAzEQxoMoWGqvngOet84m-_eoRW2xUsF6XrLJpN2y3axJ9tCbj-Az-iSmVESGYWbg45uPHyHXMUxjAHYrlNlPGTAOUBbZGRmxuEyjGPL4_N9-SSbO7QAgHLxM8hFRL0Prm-_Pr_WhR7o2vWnNppGipW9eeHS06ei82WzRBs3KKrT0dWu86RpJF50bWuGNdfReOFTUdPRZbMwe6Qv6YLEU3jcS3RW50KJ1OPmdY_L--LCezaPl6mkxu1tGkkPuI5aiSlgdSuoyZBYho4CC80RoXWsGdR1nPKszzDVTqVRC56mG0AggWMnH5Obk21vzMaDz1c4MtgsvK1bkRZpDEgiNyfSkktY4Z1FXvW32wh6qGKojzOoIs_qDyX8AvBxqKQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Tao, Liyun</creator><creator>Liu, Yahong</creator><creator>Zhou, Xin</creator><creator>Du, Lianlian</creator><creator>Li, Meize</creator><creator>Ji, Ruonan</creator><creator>Song, Kun</creator><creator>Zhao, Xiaopeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5071-0065</orcidid></search><sort><creationdate>20231001</creationdate><title>Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices</title><author>Tao, Liyun ; Liu, Yahong ; Zhou, Xin ; Du, Lianlian ; Li, Meize ; Ji, Ruonan ; Song, Kun ; Zhao, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-25ed42b2b2cf9219a739a08334affbf20bb1636b6e7f2d5cdaf75f075fe00a293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed matter physics</topic><topic>Dipole moments</topic><topic>Lattices</topic><topic>Materials science</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical properties</topic><topic>Rings (mathematics)</topic><topic>Rotation</topic><topic>Stretching</topic><topic>Topological insulators</topic><toplevel>online_resources</toplevel><creatorcontrib>Tao, Liyun</creatorcontrib><creatorcontrib>Liu, Yahong</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Du, Lianlian</creatorcontrib><creatorcontrib>Li, Meize</creatorcontrib><creatorcontrib>Ji, Ruonan</creatorcontrib><creatorcontrib>Song, Kun</creatorcontrib><creatorcontrib>Zhao, Xiaopeng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Liyun</au><au>Liu, Yahong</au><au>Zhou, Xin</au><au>Du, Lianlian</au><au>Li, Meize</au><au>Ji, Ruonan</au><au>Song, Kun</au><au>Zhao, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices</atitle><jtitle>Advanced optical materials</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>11</volume><issue>20</issue><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topological insulators based on Kagome metal lattices. By stretching or rotating Kagome metal lattices, two types of topological insulators are obtained, and multi‐type topological states are observed. By stretching Kagome metal lattices, a 1D topological edge state and two types of higher‐order topological corner states (corresponding to a traditional higher‐order topological corner state based on nearest‐neighbor coupling and a new higher‐order corner state caused by long‐range interactions) are obtained in a classical quantization of dipole moments higher‐order topological insulators. By rotating Kagome metal lattices, dual‐band higher‐order valley‐Hall topological insulators are achieved with nodal ring degeneracy. Odd‐type and even‐type topological states are obtained. Achieving reconfigurable, multi‐type, and multi‐band topological insulators by using a single structural unit provides interesting insights into topological photonics and provides an unconventional approach to explore photonic systems and condensed matter physics.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202300986</doi><orcidid>https://orcid.org/0000-0002-5071-0065</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2023-10, Vol.11 (20) |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2878570402 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Condensed matter physics Dipole moments Lattices Materials science Optics Photonics Physical properties Rings (mathematics) Rotation Stretching Topological insulators |
title | Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90Type%20Topological%20States%20in%20Higher%E2%80%90Order%20Photonic%20Insulators%20Based%20on%20Kagome%20Metal%20Lattices&rft.jtitle=Advanced%20optical%20materials&rft.au=Tao,%20Liyun&rft.date=2023-10-01&rft.volume=11&rft.issue=20&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202300986&rft_dat=%3Cproquest_cross%3E2878570402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878570402&rft_id=info:pmid/&rfr_iscdi=true |