Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices

Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2023-10, Vol.11 (20)
Hauptverfasser: Tao, Liyun, Liu, Yahong, Zhou, Xin, Du, Lianlian, Li, Meize, Ji, Ruonan, Song, Kun, Zhao, Xiaopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Advanced optical materials
container_volume 11
creator Tao, Liyun
Liu, Yahong
Zhou, Xin
Du, Lianlian
Li, Meize
Ji, Ruonan
Song, Kun
Zhao, Xiaopeng
description Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topological insulators based on Kagome metal lattices. By stretching or rotating Kagome metal lattices, two types of topological insulators are obtained, and multi‐type topological states are observed. By stretching Kagome metal lattices, a 1D topological edge state and two types of higher‐order topological corner states (corresponding to a traditional higher‐order topological corner state based on nearest‐neighbor coupling and a new higher‐order corner state caused by long‐range interactions) are obtained in a classical quantization of dipole moments higher‐order topological insulators. By rotating Kagome metal lattices, dual‐band higher‐order valley‐Hall topological insulators are achieved with nodal ring degeneracy. Odd‐type and even‐type topological states are obtained. Achieving reconfigurable, multi‐type, and multi‐band topological insulators by using a single structural unit provides interesting insights into topological photonics and provides an unconventional approach to explore photonic systems and condensed matter physics.
doi_str_mv 10.1002/adom.202300986
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878570402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878570402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-25ed42b2b2cf9219a739a08334affbf20bb1636b6e7f2d5cdaf75f075fe00a293</originalsourceid><addsrcrecordid>eNpNkM9KAzEQxoMoWGqvngOet84m-_eoRW2xUsF6XrLJpN2y3axJ9tCbj-Az-iSmVESGYWbg45uPHyHXMUxjAHYrlNlPGTAOUBbZGRmxuEyjGPL4_N9-SSbO7QAgHLxM8hFRL0Prm-_Pr_WhR7o2vWnNppGipW9eeHS06ei82WzRBs3KKrT0dWu86RpJF50bWuGNdfReOFTUdPRZbMwe6Qv6YLEU3jcS3RW50KJ1OPmdY_L--LCezaPl6mkxu1tGkkPuI5aiSlgdSuoyZBYho4CC80RoXWsGdR1nPKszzDVTqVRC56mG0AggWMnH5Obk21vzMaDz1c4MtgsvK1bkRZpDEgiNyfSkktY4Z1FXvW32wh6qGKojzOoIs_qDyX8AvBxqKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878570402</pqid></control><display><type>article</type><title>Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tao, Liyun ; Liu, Yahong ; Zhou, Xin ; Du, Lianlian ; Li, Meize ; Ji, Ruonan ; Song, Kun ; Zhao, Xiaopeng</creator><creatorcontrib>Tao, Liyun ; Liu, Yahong ; Zhou, Xin ; Du, Lianlian ; Li, Meize ; Ji, Ruonan ; Song, Kun ; Zhao, Xiaopeng</creatorcontrib><description>Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topological insulators based on Kagome metal lattices. By stretching or rotating Kagome metal lattices, two types of topological insulators are obtained, and multi‐type topological states are observed. By stretching Kagome metal lattices, a 1D topological edge state and two types of higher‐order topological corner states (corresponding to a traditional higher‐order topological corner state based on nearest‐neighbor coupling and a new higher‐order corner state caused by long‐range interactions) are obtained in a classical quantization of dipole moments higher‐order topological insulators. By rotating Kagome metal lattices, dual‐band higher‐order valley‐Hall topological insulators are achieved with nodal ring degeneracy. Odd‐type and even‐type topological states are obtained. Achieving reconfigurable, multi‐type, and multi‐band topological insulators by using a single structural unit provides interesting insights into topological photonics and provides an unconventional approach to explore photonic systems and condensed matter physics.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202300986</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Condensed matter physics ; Dipole moments ; Lattices ; Materials science ; Optics ; Photonics ; Physical properties ; Rings (mathematics) ; Rotation ; Stretching ; Topological insulators</subject><ispartof>Advanced optical materials, 2023-10, Vol.11 (20)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-25ed42b2b2cf9219a739a08334affbf20bb1636b6e7f2d5cdaf75f075fe00a293</citedby><cites>FETCH-LOGICAL-c307t-25ed42b2b2cf9219a739a08334affbf20bb1636b6e7f2d5cdaf75f075fe00a293</cites><orcidid>0000-0002-5071-0065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Tao, Liyun</creatorcontrib><creatorcontrib>Liu, Yahong</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Du, Lianlian</creatorcontrib><creatorcontrib>Li, Meize</creatorcontrib><creatorcontrib>Ji, Ruonan</creatorcontrib><creatorcontrib>Song, Kun</creatorcontrib><creatorcontrib>Zhao, Xiaopeng</creatorcontrib><title>Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices</title><title>Advanced optical materials</title><description>Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topological insulators based on Kagome metal lattices. By stretching or rotating Kagome metal lattices, two types of topological insulators are obtained, and multi‐type topological states are observed. By stretching Kagome metal lattices, a 1D topological edge state and two types of higher‐order topological corner states (corresponding to a traditional higher‐order topological corner state based on nearest‐neighbor coupling and a new higher‐order corner state caused by long‐range interactions) are obtained in a classical quantization of dipole moments higher‐order topological insulators. By rotating Kagome metal lattices, dual‐band higher‐order valley‐Hall topological insulators are achieved with nodal ring degeneracy. Odd‐type and even‐type topological states are obtained. Achieving reconfigurable, multi‐type, and multi‐band topological insulators by using a single structural unit provides interesting insights into topological photonics and provides an unconventional approach to explore photonic systems and condensed matter physics.</description><subject>Condensed matter physics</subject><subject>Dipole moments</subject><subject>Lattices</subject><subject>Materials science</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical properties</subject><subject>Rings (mathematics)</subject><subject>Rotation</subject><subject>Stretching</subject><subject>Topological insulators</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9KAzEQxoMoWGqvngOet84m-_eoRW2xUsF6XrLJpN2y3axJ9tCbj-Az-iSmVESGYWbg45uPHyHXMUxjAHYrlNlPGTAOUBbZGRmxuEyjGPL4_N9-SSbO7QAgHLxM8hFRL0Prm-_Pr_WhR7o2vWnNppGipW9eeHS06ei82WzRBs3KKrT0dWu86RpJF50bWuGNdfReOFTUdPRZbMwe6Qv6YLEU3jcS3RW50KJ1OPmdY_L--LCezaPl6mkxu1tGkkPuI5aiSlgdSuoyZBYho4CC80RoXWsGdR1nPKszzDVTqVRC56mG0AggWMnH5Obk21vzMaDz1c4MtgsvK1bkRZpDEgiNyfSkktY4Z1FXvW32wh6qGKojzOoIs_qDyX8AvBxqKQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Tao, Liyun</creator><creator>Liu, Yahong</creator><creator>Zhou, Xin</creator><creator>Du, Lianlian</creator><creator>Li, Meize</creator><creator>Ji, Ruonan</creator><creator>Song, Kun</creator><creator>Zhao, Xiaopeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5071-0065</orcidid></search><sort><creationdate>20231001</creationdate><title>Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices</title><author>Tao, Liyun ; Liu, Yahong ; Zhou, Xin ; Du, Lianlian ; Li, Meize ; Ji, Ruonan ; Song, Kun ; Zhao, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-25ed42b2b2cf9219a739a08334affbf20bb1636b6e7f2d5cdaf75f075fe00a293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed matter physics</topic><topic>Dipole moments</topic><topic>Lattices</topic><topic>Materials science</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical properties</topic><topic>Rings (mathematics)</topic><topic>Rotation</topic><topic>Stretching</topic><topic>Topological insulators</topic><toplevel>online_resources</toplevel><creatorcontrib>Tao, Liyun</creatorcontrib><creatorcontrib>Liu, Yahong</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Du, Lianlian</creatorcontrib><creatorcontrib>Li, Meize</creatorcontrib><creatorcontrib>Ji, Ruonan</creatorcontrib><creatorcontrib>Song, Kun</creatorcontrib><creatorcontrib>Zhao, Xiaopeng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Liyun</au><au>Liu, Yahong</au><au>Zhou, Xin</au><au>Du, Lianlian</au><au>Li, Meize</au><au>Ji, Ruonan</au><au>Song, Kun</au><au>Zhao, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices</atitle><jtitle>Advanced optical materials</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>11</volume><issue>20</issue><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Tunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topological insulators based on Kagome metal lattices. By stretching or rotating Kagome metal lattices, two types of topological insulators are obtained, and multi‐type topological states are observed. By stretching Kagome metal lattices, a 1D topological edge state and two types of higher‐order topological corner states (corresponding to a traditional higher‐order topological corner state based on nearest‐neighbor coupling and a new higher‐order corner state caused by long‐range interactions) are obtained in a classical quantization of dipole moments higher‐order topological insulators. By rotating Kagome metal lattices, dual‐band higher‐order valley‐Hall topological insulators are achieved with nodal ring degeneracy. Odd‐type and even‐type topological states are obtained. Achieving reconfigurable, multi‐type, and multi‐band topological insulators by using a single structural unit provides interesting insights into topological photonics and provides an unconventional approach to explore photonic systems and condensed matter physics.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202300986</doi><orcidid>https://orcid.org/0000-0002-5071-0065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2023-10, Vol.11 (20)
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2878570402
source Wiley Online Library Journals Frontfile Complete
subjects Condensed matter physics
Dipole moments
Lattices
Materials science
Optics
Photonics
Physical properties
Rings (mathematics)
Rotation
Stretching
Topological insulators
title Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90Type%20Topological%20States%20in%20Higher%E2%80%90Order%20Photonic%20Insulators%20Based%20on%20Kagome%20Metal%20Lattices&rft.jtitle=Advanced%20optical%20materials&rft.au=Tao,%20Liyun&rft.date=2023-10-01&rft.volume=11&rft.issue=20&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202300986&rft_dat=%3Cproquest_cross%3E2878570402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878570402&rft_id=info:pmid/&rfr_iscdi=true