A novel privacy protection approach with better human imperceptibility

Our generation is quite obsessed with technology and we like to share our personal information such as photos and videos on the internet via different social networking websites i.e. Facebook, Snapchat, Instagram, etc. Therefore, it becomes easier for others to breach our privacy and harm us in a di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-10, Vol.53 (19), p.21788-21798
Hauptverfasser: Rana, Kapil, Pandey, Aman, Goyal, Parth, Singh, Gurinder, Goyal, Puneet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21798
container_issue 19
container_start_page 21788
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 53
creator Rana, Kapil
Pandey, Aman
Goyal, Parth
Singh, Gurinder
Goyal, Puneet
description Our generation is quite obsessed with technology and we like to share our personal information such as photos and videos on the internet via different social networking websites i.e. Facebook, Snapchat, Instagram, etc. Therefore, it becomes easier for others to breach our privacy and harm us in a direct or indirect way. Now, computerized systems have advanced due to the improvements in Machine Learning (ML) algorithms and Artificial Intelligence (AI). These algorithms can extract sensitive information such as face attributes, text information, etc. from images or videos and can be used for privacy breaching. In this paper, we propose a novel privacy protection method by adding intelligent noise to the image while preserving image aesthetics and attributes. We determine multiple attributes for an image such as baldness, smiling, gender, etc. and we intelligently add noise to particular regions of the image that define a particular attribute using the visual explanation technique i.e. GradCam++, thereby preserving the other attributes. The addition of noise is based on the idea of Fast Gradient Sign Method (FGSM) that maximizes the gradients of the loss of an input image to create a new adversarial image. We integrate FGSM adversarial image and GradCam++ output to affect particular attributes only and hence keeping the image human imperceptible. The experiment results show that our attack outperforms the existing attacks including naive FGSM, Projected Gradient Descent (PGD), Momentum Iterative Method (MIM), Shadow Attack (SA), and Fast Minimum Norm (FMN) in terms of preserving attributes and image visual quality, when evaluated on CelebA dataset.
doi_str_mv 10.1007/s10489-023-04592-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878560611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878560611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f6060f8b66dd54e77b45eff8d3368df682d3accaeb4859c5e7e6b84ac45fd6343</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hk83ePpVgVCl4UvIVsNnG3tLtrklb67Y2u4M3TY-C9NzM_hK4J3BIAeRcJMFVhKCkGxqsSyxM0I1xSLFklT9EMqpJhIaq3c3QR4wYAKAUyQ6tF0Q8Hty3G0B2MPWYdkrOpG_rCjHkwti0-u9QWtUvJhaLd70xfdLvRBevG1NXdtkvHS3TmzTa6q1-do9fV_cvyEa-fH56WizW2pYSEvQABXtVCNA1nTsqacee9aigVqvFClQ011hpXM8Ury510olbMWMZ9Iyijc3Qz9ebLPvYuJr0Z9qHPK3WppOK5n5DsKieXDUOMwXmdv9uZcNQE9DcvPfHSmZf-4aVlDtEpFLO5f3fhr_qf1BeII28g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878560611</pqid></control><display><type>article</type><title>A novel privacy protection approach with better human imperceptibility</title><source>Springer Nature - Complete Springer Journals</source><creator>Rana, Kapil ; Pandey, Aman ; Goyal, Parth ; Singh, Gurinder ; Goyal, Puneet</creator><creatorcontrib>Rana, Kapil ; Pandey, Aman ; Goyal, Parth ; Singh, Gurinder ; Goyal, Puneet</creatorcontrib><description>Our generation is quite obsessed with technology and we like to share our personal information such as photos and videos on the internet via different social networking websites i.e. Facebook, Snapchat, Instagram, etc. Therefore, it becomes easier for others to breach our privacy and harm us in a direct or indirect way. Now, computerized systems have advanced due to the improvements in Machine Learning (ML) algorithms and Artificial Intelligence (AI). These algorithms can extract sensitive information such as face attributes, text information, etc. from images or videos and can be used for privacy breaching. In this paper, we propose a novel privacy protection method by adding intelligent noise to the image while preserving image aesthetics and attributes. We determine multiple attributes for an image such as baldness, smiling, gender, etc. and we intelligently add noise to particular regions of the image that define a particular attribute using the visual explanation technique i.e. GradCam++, thereby preserving the other attributes. The addition of noise is based on the idea of Fast Gradient Sign Method (FGSM) that maximizes the gradients of the loss of an input image to create a new adversarial image. We integrate FGSM adversarial image and GradCam++ output to affect particular attributes only and hence keeping the image human imperceptible. The experiment results show that our attack outperforms the existing attacks including naive FGSM, Projected Gradient Descent (PGD), Momentum Iterative Method (MIM), Shadow Attack (SA), and Fast Minimum Norm (FMN) in terms of preserving attributes and image visual quality, when evaluated on CelebA dataset.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-023-04592-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Image quality ; Iterative methods ; Machine learning ; Machines ; Manufacturing ; Mechanical Engineering ; Privacy ; Processes ; Social networks ; Video</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2023-10, Vol.53 (19), p.21788-21798</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f6060f8b66dd54e77b45eff8d3368df682d3accaeb4859c5e7e6b84ac45fd6343</cites><orcidid>0000-0002-6196-9347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-023-04592-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-023-04592-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Rana, Kapil</creatorcontrib><creatorcontrib>Pandey, Aman</creatorcontrib><creatorcontrib>Goyal, Parth</creatorcontrib><creatorcontrib>Singh, Gurinder</creatorcontrib><creatorcontrib>Goyal, Puneet</creatorcontrib><title>A novel privacy protection approach with better human imperceptibility</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Our generation is quite obsessed with technology and we like to share our personal information such as photos and videos on the internet via different social networking websites i.e. Facebook, Snapchat, Instagram, etc. Therefore, it becomes easier for others to breach our privacy and harm us in a direct or indirect way. Now, computerized systems have advanced due to the improvements in Machine Learning (ML) algorithms and Artificial Intelligence (AI). These algorithms can extract sensitive information such as face attributes, text information, etc. from images or videos and can be used for privacy breaching. In this paper, we propose a novel privacy protection method by adding intelligent noise to the image while preserving image aesthetics and attributes. We determine multiple attributes for an image such as baldness, smiling, gender, etc. and we intelligently add noise to particular regions of the image that define a particular attribute using the visual explanation technique i.e. GradCam++, thereby preserving the other attributes. The addition of noise is based on the idea of Fast Gradient Sign Method (FGSM) that maximizes the gradients of the loss of an input image to create a new adversarial image. We integrate FGSM adversarial image and GradCam++ output to affect particular attributes only and hence keeping the image human imperceptible. The experiment results show that our attack outperforms the existing attacks including naive FGSM, Projected Gradient Descent (PGD), Momentum Iterative Method (MIM), Shadow Attack (SA), and Fast Minimum Norm (FMN) in terms of preserving attributes and image visual quality, when evaluated on CelebA dataset.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Image quality</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Privacy</subject><subject>Processes</subject><subject>Social networks</subject><subject>Video</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hk83ePpVgVCl4UvIVsNnG3tLtrklb67Y2u4M3TY-C9NzM_hK4J3BIAeRcJMFVhKCkGxqsSyxM0I1xSLFklT9EMqpJhIaq3c3QR4wYAKAUyQ6tF0Q8Hty3G0B2MPWYdkrOpG_rCjHkwti0-u9QWtUvJhaLd70xfdLvRBevG1NXdtkvHS3TmzTa6q1-do9fV_cvyEa-fH56WizW2pYSEvQABXtVCNA1nTsqacee9aigVqvFClQ011hpXM8Ury510olbMWMZ9Iyijc3Qz9ebLPvYuJr0Z9qHPK3WppOK5n5DsKieXDUOMwXmdv9uZcNQE9DcvPfHSmZf-4aVlDtEpFLO5f3fhr_qf1BeII28g</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Rana, Kapil</creator><creator>Pandey, Aman</creator><creator>Goyal, Parth</creator><creator>Singh, Gurinder</creator><creator>Goyal, Puneet</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6196-9347</orcidid></search><sort><creationdate>20231001</creationdate><title>A novel privacy protection approach with better human imperceptibility</title><author>Rana, Kapil ; Pandey, Aman ; Goyal, Parth ; Singh, Gurinder ; Goyal, Puneet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f6060f8b66dd54e77b45eff8d3368df682d3accaeb4859c5e7e6b84ac45fd6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Image quality</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Privacy</topic><topic>Processes</topic><topic>Social networks</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rana, Kapil</creatorcontrib><creatorcontrib>Pandey, Aman</creatorcontrib><creatorcontrib>Goyal, Parth</creatorcontrib><creatorcontrib>Singh, Gurinder</creatorcontrib><creatorcontrib>Goyal, Puneet</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rana, Kapil</au><au>Pandey, Aman</au><au>Goyal, Parth</au><au>Singh, Gurinder</au><au>Goyal, Puneet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel privacy protection approach with better human imperceptibility</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>53</volume><issue>19</issue><spage>21788</spage><epage>21798</epage><pages>21788-21798</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Our generation is quite obsessed with technology and we like to share our personal information such as photos and videos on the internet via different social networking websites i.e. Facebook, Snapchat, Instagram, etc. Therefore, it becomes easier for others to breach our privacy and harm us in a direct or indirect way. Now, computerized systems have advanced due to the improvements in Machine Learning (ML) algorithms and Artificial Intelligence (AI). These algorithms can extract sensitive information such as face attributes, text information, etc. from images or videos and can be used for privacy breaching. In this paper, we propose a novel privacy protection method by adding intelligent noise to the image while preserving image aesthetics and attributes. We determine multiple attributes for an image such as baldness, smiling, gender, etc. and we intelligently add noise to particular regions of the image that define a particular attribute using the visual explanation technique i.e. GradCam++, thereby preserving the other attributes. The addition of noise is based on the idea of Fast Gradient Sign Method (FGSM) that maximizes the gradients of the loss of an input image to create a new adversarial image. We integrate FGSM adversarial image and GradCam++ output to affect particular attributes only and hence keeping the image human imperceptible. The experiment results show that our attack outperforms the existing attacks including naive FGSM, Projected Gradient Descent (PGD), Momentum Iterative Method (MIM), Shadow Attack (SA), and Fast Minimum Norm (FMN) in terms of preserving attributes and image visual quality, when evaluated on CelebA dataset.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-023-04592-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6196-9347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2023-10, Vol.53 (19), p.21788-21798
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2878560611
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial Intelligence
Computer Science
Image quality
Iterative methods
Machine learning
Machines
Manufacturing
Mechanical Engineering
Privacy
Processes
Social networks
Video
title A novel privacy protection approach with better human imperceptibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20privacy%20protection%20approach%20with%20better%20human%20imperceptibility&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Rana,%20Kapil&rft.date=2023-10-01&rft.volume=53&rft.issue=19&rft.spage=21788&rft.epage=21798&rft.pages=21788-21798&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-023-04592-7&rft_dat=%3Cproquest_cross%3E2878560611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878560611&rft_id=info:pmid/&rfr_iscdi=true