Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems

Agroforestry is a land-use system that combines arable and/or livestock management with tree cultivation, which has been shown to provide a wide range of socio-economic and ecological benefits. It is considered a promising strategy for enhancing resilience of agricultural systems that must remain pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agroforestry systems 2023-12, Vol.97 (8), p.1481-1489
Hauptverfasser: Golicz, Karolina, Piepho, Hans-Peter, Minarsch, Eva-Maria L., Niether, Wiebke, Große-Stoltenberg, André, Oldeland, Jens, Breuer, Lutz, Gattinger, Andreas, Jacobs, Suzanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1489
container_issue 8
container_start_page 1481
container_title Agroforestry systems
container_volume 97
creator Golicz, Karolina
Piepho, Hans-Peter
Minarsch, Eva-Maria L.
Niether, Wiebke
Große-Stoltenberg, André
Oldeland, Jens
Breuer, Lutz
Gattinger, Andreas
Jacobs, Suzanne
description Agroforestry is a land-use system that combines arable and/or livestock management with tree cultivation, which has been shown to provide a wide range of socio-economic and ecological benefits. It is considered a promising strategy for enhancing resilience of agricultural systems that must remain productive despite increasing environmental and societal pressures. However, agroforestry systems pose a number of challenges for experimental research and scientific hypothesis testing because of their inherent spatiotemporal complexity. We reviewed current approaches to data analysis and sampling strategies of bio-physico-chemical indicators, including crop yield, in European temperate agroforestry systems to examine the existing statistical methods used in agroforestry experiments. We found multilevel models, which are commonly employed in ecology, to be underused and under-described in agroforestry system analysis. This Short Communication together with a companion R script are designed to act as an introduction to multilevel models and to promote their use in agroforestry research.
doi_str_mv 10.1007/s10457-023-00871-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878549463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878549463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7efe43be77038c804cfcf3fcbfa637737e4bbe9641577d17c127c0440a78312e3</originalsourceid><addsrcrecordid>eNp9kEFPAjEQhRujiYj-AU-beF6dbktnORqiYkLiRc9Nt7RQXHaxUwj8e4uYePMwmcN87-XNY-yWwz0HwAfiIEdYQiVKgBp5uT9jAz7CqhyrGs7ZALjCUgqlLtkV0QoAxgrrAfuchsWyzZNCtyjS0hWbPrkuBdMWvS_W2zaF1u1cW1AyKVAKNl_W_dy1VPg-FqYz7YECHenQzcMuzLeZMIvY57OjFA8FHSi5NV2zC29acje_e8g-np_eJ9Ny9vbyOnmclVYokUp03knROEQQta1BWm-98LbxRglEgU42jRsrmf_DOUfLK7QgJRisBa-cGLK7k-8m9l_bHEGv-m3MOUlXNdYjOZZKZKo6UTb2RNF5vYlhbeJBc9DHUvWpVJ1L1T-l6n0WiZOIMtwtXPyz_kf1DWb3fYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878549463</pqid></control><display><type>article</type><title>Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Golicz, Karolina ; Piepho, Hans-Peter ; Minarsch, Eva-Maria L. ; Niether, Wiebke ; Große-Stoltenberg, André ; Oldeland, Jens ; Breuer, Lutz ; Gattinger, Andreas ; Jacobs, Suzanne</creator><creatorcontrib>Golicz, Karolina ; Piepho, Hans-Peter ; Minarsch, Eva-Maria L. ; Niether, Wiebke ; Große-Stoltenberg, André ; Oldeland, Jens ; Breuer, Lutz ; Gattinger, Andreas ; Jacobs, Suzanne</creatorcontrib><description>Agroforestry is a land-use system that combines arable and/or livestock management with tree cultivation, which has been shown to provide a wide range of socio-economic and ecological benefits. It is considered a promising strategy for enhancing resilience of agricultural systems that must remain productive despite increasing environmental and societal pressures. However, agroforestry systems pose a number of challenges for experimental research and scientific hypothesis testing because of their inherent spatiotemporal complexity. We reviewed current approaches to data analysis and sampling strategies of bio-physico-chemical indicators, including crop yield, in European temperate agroforestry systems to examine the existing statistical methods used in agroforestry experiments. We found multilevel models, which are commonly employed in ecology, to be underused and under-described in agroforestry system analysis. This Short Communication together with a companion R script are designed to act as an introduction to multilevel models and to promote their use in agroforestry research.</description><identifier>ISSN: 0167-4366</identifier><identifier>EISSN: 1572-9680</identifier><identifier>DOI: 10.1007/s10457-023-00871-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agricultural production ; Agriculture ; Agroforestry ; Arable land ; Biomedical and Life Sciences ; Chemical indicators ; Communication ; Crop yield ; Crops ; Data analysis ; Experimental research ; Farming systems ; Forestry ; Grasslands ; Hypothesis testing ; Land use ; Landscape ecology ; Life Sciences ; Livestock ; Mathematical models ; Microclimate ; Multilevel ; Research methodology ; Statistical analysis ; Statistical methods ; Statistical models ; Systems analysis ; Trees ; Variance analysis</subject><ispartof>Agroforestry systems, 2023-12, Vol.97 (8), p.1481-1489</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7efe43be77038c804cfcf3fcbfa637737e4bbe9641577d17c127c0440a78312e3</citedby><cites>FETCH-LOGICAL-c363t-7efe43be77038c804cfcf3fcbfa637737e4bbe9641577d17c127c0440a78312e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10457-023-00871-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10457-023-00871-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Golicz, Karolina</creatorcontrib><creatorcontrib>Piepho, Hans-Peter</creatorcontrib><creatorcontrib>Minarsch, Eva-Maria L.</creatorcontrib><creatorcontrib>Niether, Wiebke</creatorcontrib><creatorcontrib>Große-Stoltenberg, André</creatorcontrib><creatorcontrib>Oldeland, Jens</creatorcontrib><creatorcontrib>Breuer, Lutz</creatorcontrib><creatorcontrib>Gattinger, Andreas</creatorcontrib><creatorcontrib>Jacobs, Suzanne</creatorcontrib><title>Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems</title><title>Agroforestry systems</title><addtitle>Agroforest Syst</addtitle><description>Agroforestry is a land-use system that combines arable and/or livestock management with tree cultivation, which has been shown to provide a wide range of socio-economic and ecological benefits. It is considered a promising strategy for enhancing resilience of agricultural systems that must remain productive despite increasing environmental and societal pressures. However, agroforestry systems pose a number of challenges for experimental research and scientific hypothesis testing because of their inherent spatiotemporal complexity. We reviewed current approaches to data analysis and sampling strategies of bio-physico-chemical indicators, including crop yield, in European temperate agroforestry systems to examine the existing statistical methods used in agroforestry experiments. We found multilevel models, which are commonly employed in ecology, to be underused and under-described in agroforestry system analysis. This Short Communication together with a companion R script are designed to act as an introduction to multilevel models and to promote their use in agroforestry research.</description><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Agroforestry</subject><subject>Arable land</subject><subject>Biomedical and Life Sciences</subject><subject>Chemical indicators</subject><subject>Communication</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Data analysis</subject><subject>Experimental research</subject><subject>Farming systems</subject><subject>Forestry</subject><subject>Grasslands</subject><subject>Hypothesis testing</subject><subject>Land use</subject><subject>Landscape ecology</subject><subject>Life Sciences</subject><subject>Livestock</subject><subject>Mathematical models</subject><subject>Microclimate</subject><subject>Multilevel</subject><subject>Research methodology</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Systems analysis</subject><subject>Trees</subject><subject>Variance analysis</subject><issn>0167-4366</issn><issn>1572-9680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPAjEQhRujiYj-AU-beF6dbktnORqiYkLiRc9Nt7RQXHaxUwj8e4uYePMwmcN87-XNY-yWwz0HwAfiIEdYQiVKgBp5uT9jAz7CqhyrGs7ZALjCUgqlLtkV0QoAxgrrAfuchsWyzZNCtyjS0hWbPrkuBdMWvS_W2zaF1u1cW1AyKVAKNl_W_dy1VPg-FqYz7YECHenQzcMuzLeZMIvY57OjFA8FHSi5NV2zC29acje_e8g-np_eJ9Ny9vbyOnmclVYokUp03knROEQQta1BWm-98LbxRglEgU42jRsrmf_DOUfLK7QgJRisBa-cGLK7k-8m9l_bHEGv-m3MOUlXNdYjOZZKZKo6UTb2RNF5vYlhbeJBc9DHUvWpVJ1L1T-l6n0WiZOIMtwtXPyz_kf1DWb3fYU</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Golicz, Karolina</creator><creator>Piepho, Hans-Peter</creator><creator>Minarsch, Eva-Maria L.</creator><creator>Niether, Wiebke</creator><creator>Große-Stoltenberg, André</creator><creator>Oldeland, Jens</creator><creator>Breuer, Lutz</creator><creator>Gattinger, Andreas</creator><creator>Jacobs, Suzanne</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20231201</creationdate><title>Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems</title><author>Golicz, Karolina ; Piepho, Hans-Peter ; Minarsch, Eva-Maria L. ; Niether, Wiebke ; Große-Stoltenberg, André ; Oldeland, Jens ; Breuer, Lutz ; Gattinger, Andreas ; Jacobs, Suzanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7efe43be77038c804cfcf3fcbfa637737e4bbe9641577d17c127c0440a78312e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Agroforestry</topic><topic>Arable land</topic><topic>Biomedical and Life Sciences</topic><topic>Chemical indicators</topic><topic>Communication</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Data analysis</topic><topic>Experimental research</topic><topic>Farming systems</topic><topic>Forestry</topic><topic>Grasslands</topic><topic>Hypothesis testing</topic><topic>Land use</topic><topic>Landscape ecology</topic><topic>Life Sciences</topic><topic>Livestock</topic><topic>Mathematical models</topic><topic>Microclimate</topic><topic>Multilevel</topic><topic>Research methodology</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Systems analysis</topic><topic>Trees</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golicz, Karolina</creatorcontrib><creatorcontrib>Piepho, Hans-Peter</creatorcontrib><creatorcontrib>Minarsch, Eva-Maria L.</creatorcontrib><creatorcontrib>Niether, Wiebke</creatorcontrib><creatorcontrib>Große-Stoltenberg, André</creatorcontrib><creatorcontrib>Oldeland, Jens</creatorcontrib><creatorcontrib>Breuer, Lutz</creatorcontrib><creatorcontrib>Gattinger, Andreas</creatorcontrib><creatorcontrib>Jacobs, Suzanne</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Agroforestry systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golicz, Karolina</au><au>Piepho, Hans-Peter</au><au>Minarsch, Eva-Maria L.</au><au>Niether, Wiebke</au><au>Große-Stoltenberg, André</au><au>Oldeland, Jens</au><au>Breuer, Lutz</au><au>Gattinger, Andreas</au><au>Jacobs, Suzanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems</atitle><jtitle>Agroforestry systems</jtitle><stitle>Agroforest Syst</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>97</volume><issue>8</issue><spage>1481</spage><epage>1489</epage><pages>1481-1489</pages><issn>0167-4366</issn><eissn>1572-9680</eissn><abstract>Agroforestry is a land-use system that combines arable and/or livestock management with tree cultivation, which has been shown to provide a wide range of socio-economic and ecological benefits. It is considered a promising strategy for enhancing resilience of agricultural systems that must remain productive despite increasing environmental and societal pressures. However, agroforestry systems pose a number of challenges for experimental research and scientific hypothesis testing because of their inherent spatiotemporal complexity. We reviewed current approaches to data analysis and sampling strategies of bio-physico-chemical indicators, including crop yield, in European temperate agroforestry systems to examine the existing statistical methods used in agroforestry experiments. We found multilevel models, which are commonly employed in ecology, to be underused and under-described in agroforestry system analysis. This Short Communication together with a companion R script are designed to act as an introduction to multilevel models and to promote their use in agroforestry research.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10457-023-00871-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-4366
ispartof Agroforestry systems, 2023-12, Vol.97 (8), p.1481-1489
issn 0167-4366
1572-9680
language eng
recordid cdi_proquest_journals_2878549463
source SpringerLink Journals - AutoHoldings
subjects Agricultural production
Agriculture
Agroforestry
Arable land
Biomedical and Life Sciences
Chemical indicators
Communication
Crop yield
Crops
Data analysis
Experimental research
Farming systems
Forestry
Grasslands
Hypothesis testing
Land use
Landscape ecology
Life Sciences
Livestock
Mathematical models
Microclimate
Multilevel
Research methodology
Statistical analysis
Statistical methods
Statistical models
Systems analysis
Trees
Variance analysis
title Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highlighting%20the%20potential%20of%20multilevel%20statistical%20models%20for%20analysis%20of%20individual%20agroforestry%20systems&rft.jtitle=Agroforestry%20systems&rft.au=Golicz,%20Karolina&rft.date=2023-12-01&rft.volume=97&rft.issue=8&rft.spage=1481&rft.epage=1489&rft.pages=1481-1489&rft.issn=0167-4366&rft.eissn=1572-9680&rft_id=info:doi/10.1007/s10457-023-00871-x&rft_dat=%3Cproquest_cross%3E2878549463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878549463&rft_id=info:pmid/&rfr_iscdi=true