Machine Learning in the Quantum Age: Quantum vs. Classical Support Vector Machines
This work endeavors to juxtapose the efficacy of machine learning algorithms within classical and quantum computational paradigms. Particularly, by emphasizing on Support Vector Machines (SVM), we scrutinize the classification prowess of classical SVM and Quantum Support Vector Machines (QSVM) opera...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tasar, Davut Emre Kutan Koruyan Ceren Ocal Tasar |
description | This work endeavors to juxtapose the efficacy of machine learning algorithms within classical and quantum computational paradigms. Particularly, by emphasizing on Support Vector Machines (SVM), we scrutinize the classification prowess of classical SVM and Quantum Support Vector Machines (QSVM) operational on quantum hardware over the Iris dataset. The methodology embraced encapsulates an extensive array of experiments orchestrated through the Qiskit library, alongside hyperparameter optimization. The findings unveil that in particular scenarios, QSVMs extend a level of accuracy that can vie with classical SVMs, albeit the execution times are presently protracted. Moreover, we underscore that augmenting quantum computational capacity and the magnitude of parallelism can markedly ameliorate the performance of quantum machine learning algorithms. This inquiry furnishes invaluable insights regarding the extant scenario and future potentiality of machine learning applications in the quantum epoch. Colab: https://t.ly/QKuz0 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878534022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878534022</sourcerecordid><originalsourceid>FETCH-proquest_journals_28785340223</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMgWLTvcMG5Em9aW9ykKA46-INrCSW2KTWpuYnPr4M4O30czuEbsQiFWCZFijhhMVHHOcdVjlkmInY-yrrVRsFBSWe0aUAb8K2CU5DGhwdsGrX-wYsWUPaSSNeyh0sYBus83FTtrYPvE83Y-C57UvF3p2y-217LfTI4-wyKfNXZ4MxHVVjkRSZSjij-q95z8z7h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878534022</pqid></control><display><type>article</type><title>Machine Learning in the Quantum Age: Quantum vs. Classical Support Vector Machines</title><source>Freely Accessible Journals</source><creator>Tasar, Davut Emre ; Kutan Koruyan ; Ceren Ocal Tasar</creator><creatorcontrib>Tasar, Davut Emre ; Kutan Koruyan ; Ceren Ocal Tasar</creatorcontrib><description>This work endeavors to juxtapose the efficacy of machine learning algorithms within classical and quantum computational paradigms. Particularly, by emphasizing on Support Vector Machines (SVM), we scrutinize the classification prowess of classical SVM and Quantum Support Vector Machines (QSVM) operational on quantum hardware over the Iris dataset. The methodology embraced encapsulates an extensive array of experiments orchestrated through the Qiskit library, alongside hyperparameter optimization. The findings unveil that in particular scenarios, QSVMs extend a level of accuracy that can vie with classical SVMs, albeit the execution times are presently protracted. Moreover, we underscore that augmenting quantum computational capacity and the magnitude of parallelism can markedly ameliorate the performance of quantum machine learning algorithms. This inquiry furnishes invaluable insights regarding the extant scenario and future potentiality of machine learning applications in the quantum epoch. Colab: https://t.ly/QKuz0</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Machine learning ; Optimization ; Support vector machines ; Vectors (mathematics)</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Tasar, Davut Emre</creatorcontrib><creatorcontrib>Kutan Koruyan</creatorcontrib><creatorcontrib>Ceren Ocal Tasar</creatorcontrib><title>Machine Learning in the Quantum Age: Quantum vs. Classical Support Vector Machines</title><title>arXiv.org</title><description>This work endeavors to juxtapose the efficacy of machine learning algorithms within classical and quantum computational paradigms. Particularly, by emphasizing on Support Vector Machines (SVM), we scrutinize the classification prowess of classical SVM and Quantum Support Vector Machines (QSVM) operational on quantum hardware over the Iris dataset. The methodology embraced encapsulates an extensive array of experiments orchestrated through the Qiskit library, alongside hyperparameter optimization. The findings unveil that in particular scenarios, QSVMs extend a level of accuracy that can vie with classical SVMs, albeit the execution times are presently protracted. Moreover, we underscore that augmenting quantum computational capacity and the magnitude of parallelism can markedly ameliorate the performance of quantum machine learning algorithms. This inquiry furnishes invaluable insights regarding the extant scenario and future potentiality of machine learning applications in the quantum epoch. Colab: https://t.ly/QKuz0</description><subject>Algorithms</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Support vector machines</subject><subject>Vectors (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAURoMgWLTvcMG5Em9aW9ykKA46-INrCSW2KTWpuYnPr4M4O30czuEbsQiFWCZFijhhMVHHOcdVjlkmInY-yrrVRsFBSWe0aUAb8K2CU5DGhwdsGrX-wYsWUPaSSNeyh0sYBus83FTtrYPvE83Y-C57UvF3p2y-217LfTI4-wyKfNXZ4MxHVVjkRSZSjij-q95z8z7h</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Tasar, Davut Emre</creator><creator>Kutan Koruyan</creator><creator>Ceren Ocal Tasar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231017</creationdate><title>Machine Learning in the Quantum Age: Quantum vs. Classical Support Vector Machines</title><author>Tasar, Davut Emre ; Kutan Koruyan ; Ceren Ocal Tasar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28785340223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Support vector machines</topic><topic>Vectors (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Tasar, Davut Emre</creatorcontrib><creatorcontrib>Kutan Koruyan</creatorcontrib><creatorcontrib>Ceren Ocal Tasar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tasar, Davut Emre</au><au>Kutan Koruyan</au><au>Ceren Ocal Tasar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Machine Learning in the Quantum Age: Quantum vs. Classical Support Vector Machines</atitle><jtitle>arXiv.org</jtitle><date>2023-10-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This work endeavors to juxtapose the efficacy of machine learning algorithms within classical and quantum computational paradigms. Particularly, by emphasizing on Support Vector Machines (SVM), we scrutinize the classification prowess of classical SVM and Quantum Support Vector Machines (QSVM) operational on quantum hardware over the Iris dataset. The methodology embraced encapsulates an extensive array of experiments orchestrated through the Qiskit library, alongside hyperparameter optimization. The findings unveil that in particular scenarios, QSVMs extend a level of accuracy that can vie with classical SVMs, albeit the execution times are presently protracted. Moreover, we underscore that augmenting quantum computational capacity and the magnitude of parallelism can markedly ameliorate the performance of quantum machine learning algorithms. This inquiry furnishes invaluable insights regarding the extant scenario and future potentiality of machine learning applications in the quantum epoch. Colab: https://t.ly/QKuz0</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2878534022 |
source | Freely Accessible Journals |
subjects | Algorithms Machine learning Optimization Support vector machines Vectors (mathematics) |
title | Machine Learning in the Quantum Age: Quantum vs. Classical Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Machine%20Learning%20in%20the%20Quantum%20Age:%20Quantum%20vs.%20Classical%20Support%20Vector%20Machines&rft.jtitle=arXiv.org&rft.au=Tasar,%20Davut%20Emre&rft.date=2023-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878534022%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878534022&rft_id=info:pmid/&rfr_iscdi=true |