Position-Free Breath Detection During Sleep via Commodity WiFi

In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-10, Vol.23 (20), p.24874-24884
Hauptverfasser: Zhuo, Hongyang, Wu, Xianda, Zhong, Qinghua, Zhang, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24884
container_issue 20
container_start_page 24874
container_title IEEE sensors journal
container_volume 23
creator Zhuo, Hongyang
Wu, Xianda
Zhong, Qinghua
Zhang, Han
description In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we propose a robust detection method that takes advantage of both the amplitude and phase of the CSI ratio, ensuring comprehensive coverage for breath detection. We also utilize the periodicity and variability features to select the most suitable breath pattern from the resulting signals. To mitigate the noise interference in nonideal sleep positions, we propose a novel principal component analysis-variational mode decomposition (PCA-VMD) fusion method to fully exploit the complementary advantage of sensing over different TX-RX pairs. In this way, we can extract the fine breath frequency component for the breath rate estimation. Extensive experiments are conducted to demonstrate the superiority of the proposed scheme to the existing state of the arts.
doi_str_mv 10.1109/JSEN.2023.3309839
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2878508173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10238451</ieee_id><sourcerecordid>2878508173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3a080a4b7883f9bc7059fe6c8e198117991d36ec56b1405a8b9dacd89c30a1703</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4HnrzGbTJBdB--EHRYUqegvZ7KymtE2b3Qr993ZpD57mZXjeGXgYu0ToIYK-eZ6OXnoZZLzHOWjF9RHroBAqRZmr4zZzSHMuv07ZWV3PAFBLITvs9i3UvvFhmY4jUXIfyTY_yZAacu02GW6iX34n0znRKvn1NhmExSKUvtkmn37sz9lJZec1XRxml32MR--Dx3Ty-vA0uJukLtN5k3ILCmxeSKV4pQsnQeiK-k4RaoUotcaS98mJfoE5CKsKXVpXKu04WJTAu-x6f3cVw3pDdWNmYROXu5cmU1IJUCj5jsI95WKo60iVWUW_sHFrEEyrybSaTKvJHDTtOlf7jieif3zGVS6Q_wFeamIx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878508173</pqid></control><display><type>article</type><title>Position-Free Breath Detection During Sleep via Commodity WiFi</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuo, Hongyang ; Wu, Xianda ; Zhong, Qinghua ; Zhang, Han</creator><creatorcontrib>Zhuo, Hongyang ; Wu, Xianda ; Zhong, Qinghua ; Zhang, Han</creatorcontrib><description>In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we propose a robust detection method that takes advantage of both the amplitude and phase of the CSI ratio, ensuring comprehensive coverage for breath detection. We also utilize the periodicity and variability features to select the most suitable breath pattern from the resulting signals. To mitigate the noise interference in nonideal sleep positions, we propose a novel principal component analysis-variational mode decomposition (PCA-VMD) fusion method to fully exploit the complementary advantage of sensing over different TX-RX pairs. In this way, we can extract the fine breath frequency component for the breath rate estimation. Extensive experiments are conducted to demonstrate the superiority of the proposed scheme to the existing state of the arts.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3309839</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Breath signals ; channel state information (CSI) ; Estimation ; Fuses ; Periodic variations ; Principal components analysis ; Receiving antennas ; Sensors ; Sleep apnea ; sleep monitoring ; WiFi ; Wireless fidelity</subject><ispartof>IEEE sensors journal, 2023-10, Vol.23 (20), p.24874-24884</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-3a080a4b7883f9bc7059fe6c8e198117991d36ec56b1405a8b9dacd89c30a1703</citedby><cites>FETCH-LOGICAL-c294t-3a080a4b7883f9bc7059fe6c8e198117991d36ec56b1405a8b9dacd89c30a1703</cites><orcidid>0000-0002-5677-967X ; 0000-0002-4037-3026 ; 0000-0002-5438-7242 ; 0000-0001-6985-1610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10238451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10238451$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhuo, Hongyang</creatorcontrib><creatorcontrib>Wu, Xianda</creatorcontrib><creatorcontrib>Zhong, Qinghua</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><title>Position-Free Breath Detection During Sleep via Commodity WiFi</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we propose a robust detection method that takes advantage of both the amplitude and phase of the CSI ratio, ensuring comprehensive coverage for breath detection. We also utilize the periodicity and variability features to select the most suitable breath pattern from the resulting signals. To mitigate the noise interference in nonideal sleep positions, we propose a novel principal component analysis-variational mode decomposition (PCA-VMD) fusion method to fully exploit the complementary advantage of sensing over different TX-RX pairs. In this way, we can extract the fine breath frequency component for the breath rate estimation. Extensive experiments are conducted to demonstrate the superiority of the proposed scheme to the existing state of the arts.</description><subject>Antennas</subject><subject>Breath signals</subject><subject>channel state information (CSI)</subject><subject>Estimation</subject><subject>Fuses</subject><subject>Periodic variations</subject><subject>Principal components analysis</subject><subject>Receiving antennas</subject><subject>Sensors</subject><subject>Sleep apnea</subject><subject>sleep monitoring</subject><subject>WiFi</subject><subject>Wireless fidelity</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4HnrzGbTJBdB--EHRYUqegvZ7KymtE2b3Qr993ZpD57mZXjeGXgYu0ToIYK-eZ6OXnoZZLzHOWjF9RHroBAqRZmr4zZzSHMuv07ZWV3PAFBLITvs9i3UvvFhmY4jUXIfyTY_yZAacu02GW6iX34n0znRKvn1NhmExSKUvtkmn37sz9lJZec1XRxml32MR--Dx3Ty-vA0uJukLtN5k3ILCmxeSKV4pQsnQeiK-k4RaoUotcaS98mJfoE5CKsKXVpXKu04WJTAu-x6f3cVw3pDdWNmYROXu5cmU1IJUCj5jsI95WKo60iVWUW_sHFrEEyrybSaTKvJHDTtOlf7jieif3zGVS6Q_wFeamIx</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Zhuo, Hongyang</creator><creator>Wu, Xianda</creator><creator>Zhong, Qinghua</creator><creator>Zhang, Han</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5677-967X</orcidid><orcidid>https://orcid.org/0000-0002-4037-3026</orcidid><orcidid>https://orcid.org/0000-0002-5438-7242</orcidid><orcidid>https://orcid.org/0000-0001-6985-1610</orcidid></search><sort><creationdate>20231015</creationdate><title>Position-Free Breath Detection During Sleep via Commodity WiFi</title><author>Zhuo, Hongyang ; Wu, Xianda ; Zhong, Qinghua ; Zhang, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3a080a4b7883f9bc7059fe6c8e198117991d36ec56b1405a8b9dacd89c30a1703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antennas</topic><topic>Breath signals</topic><topic>channel state information (CSI)</topic><topic>Estimation</topic><topic>Fuses</topic><topic>Periodic variations</topic><topic>Principal components analysis</topic><topic>Receiving antennas</topic><topic>Sensors</topic><topic>Sleep apnea</topic><topic>sleep monitoring</topic><topic>WiFi</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Hongyang</creatorcontrib><creatorcontrib>Wu, Xianda</creatorcontrib><creatorcontrib>Zhong, Qinghua</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo, Hongyang</au><au>Wu, Xianda</au><au>Zhong, Qinghua</au><au>Zhang, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Position-Free Breath Detection During Sleep via Commodity WiFi</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-10-15</date><risdate>2023</risdate><volume>23</volume><issue>20</issue><spage>24874</spage><epage>24884</epage><pages>24874-24884</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we propose a robust detection method that takes advantage of both the amplitude and phase of the CSI ratio, ensuring comprehensive coverage for breath detection. We also utilize the periodicity and variability features to select the most suitable breath pattern from the resulting signals. To mitigate the noise interference in nonideal sleep positions, we propose a novel principal component analysis-variational mode decomposition (PCA-VMD) fusion method to fully exploit the complementary advantage of sensing over different TX-RX pairs. In this way, we can extract the fine breath frequency component for the breath rate estimation. Extensive experiments are conducted to demonstrate the superiority of the proposed scheme to the existing state of the arts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3309839</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5677-967X</orcidid><orcidid>https://orcid.org/0000-0002-4037-3026</orcidid><orcidid>https://orcid.org/0000-0002-5438-7242</orcidid><orcidid>https://orcid.org/0000-0001-6985-1610</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-10, Vol.23 (20), p.24874-24884
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2878508173
source IEEE Electronic Library (IEL)
subjects Antennas
Breath signals
channel state information (CSI)
Estimation
Fuses
Periodic variations
Principal components analysis
Receiving antennas
Sensors
Sleep apnea
sleep monitoring
WiFi
Wireless fidelity
title Position-Free Breath Detection During Sleep via Commodity WiFi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Position-Free%20Breath%20Detection%20During%20Sleep%20via%20Commodity%20WiFi&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhuo,%20Hongyang&rft.date=2023-10-15&rft.volume=23&rft.issue=20&rft.spage=24874&rft.epage=24884&rft.pages=24874-24884&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3309839&rft_dat=%3Cproquest_RIE%3E2878508173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878508173&rft_id=info:pmid/&rft_ieee_id=10238451&rfr_iscdi=true