Position-Free Breath Detection During Sleep via Commodity WiFi
In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-10, Vol.23 (20), p.24874-24884 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24884 |
---|---|
container_issue | 20 |
container_start_page | 24874 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Zhuo, Hongyang Wu, Xianda Zhong, Qinghua Zhang, Han |
description | In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we propose a robust detection method that takes advantage of both the amplitude and phase of the CSI ratio, ensuring comprehensive coverage for breath detection. We also utilize the periodicity and variability features to select the most suitable breath pattern from the resulting signals. To mitigate the noise interference in nonideal sleep positions, we propose a novel principal component analysis-variational mode decomposition (PCA-VMD) fusion method to fully exploit the complementary advantage of sensing over different TX-RX pairs. In this way, we can extract the fine breath frequency component for the breath rate estimation. Extensive experiments are conducted to demonstrate the superiority of the proposed scheme to the existing state of the arts. |
doi_str_mv | 10.1109/JSEN.2023.3309839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2878508173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10238451</ieee_id><sourcerecordid>2878508173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3a080a4b7883f9bc7059fe6c8e198117991d36ec56b1405a8b9dacd89c30a1703</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4HnrzGbTJBdB--EHRYUqegvZ7KymtE2b3Qr993ZpD57mZXjeGXgYu0ToIYK-eZ6OXnoZZLzHOWjF9RHroBAqRZmr4zZzSHMuv07ZWV3PAFBLITvs9i3UvvFhmY4jUXIfyTY_yZAacu02GW6iX34n0znRKvn1NhmExSKUvtkmn37sz9lJZec1XRxml32MR--Dx3Ty-vA0uJukLtN5k3ILCmxeSKV4pQsnQeiK-k4RaoUotcaS98mJfoE5CKsKXVpXKu04WJTAu-x6f3cVw3pDdWNmYROXu5cmU1IJUCj5jsI95WKo60iVWUW_sHFrEEyrybSaTKvJHDTtOlf7jieif3zGVS6Q_wFeamIx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878508173</pqid></control><display><type>article</type><title>Position-Free Breath Detection During Sleep via Commodity WiFi</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuo, Hongyang ; Wu, Xianda ; Zhong, Qinghua ; Zhang, Han</creator><creatorcontrib>Zhuo, Hongyang ; Wu, Xianda ; Zhong, Qinghua ; Zhang, Han</creatorcontrib><description>In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we propose a robust detection method that takes advantage of both the amplitude and phase of the CSI ratio, ensuring comprehensive coverage for breath detection. We also utilize the periodicity and variability features to select the most suitable breath pattern from the resulting signals. To mitigate the noise interference in nonideal sleep positions, we propose a novel principal component analysis-variational mode decomposition (PCA-VMD) fusion method to fully exploit the complementary advantage of sensing over different TX-RX pairs. In this way, we can extract the fine breath frequency component for the breath rate estimation. Extensive experiments are conducted to demonstrate the superiority of the proposed scheme to the existing state of the arts.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3309839</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Breath signals ; channel state information (CSI) ; Estimation ; Fuses ; Periodic variations ; Principal components analysis ; Receiving antennas ; Sensors ; Sleep apnea ; sleep monitoring ; WiFi ; Wireless fidelity</subject><ispartof>IEEE sensors journal, 2023-10, Vol.23 (20), p.24874-24884</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-3a080a4b7883f9bc7059fe6c8e198117991d36ec56b1405a8b9dacd89c30a1703</citedby><cites>FETCH-LOGICAL-c294t-3a080a4b7883f9bc7059fe6c8e198117991d36ec56b1405a8b9dacd89c30a1703</cites><orcidid>0000-0002-5677-967X ; 0000-0002-4037-3026 ; 0000-0002-5438-7242 ; 0000-0001-6985-1610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10238451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10238451$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhuo, Hongyang</creatorcontrib><creatorcontrib>Wu, Xianda</creatorcontrib><creatorcontrib>Zhong, Qinghua</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><title>Position-Free Breath Detection During Sleep via Commodity WiFi</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we propose a robust detection method that takes advantage of both the amplitude and phase of the CSI ratio, ensuring comprehensive coverage for breath detection. We also utilize the periodicity and variability features to select the most suitable breath pattern from the resulting signals. To mitigate the noise interference in nonideal sleep positions, we propose a novel principal component analysis-variational mode decomposition (PCA-VMD) fusion method to fully exploit the complementary advantage of sensing over different TX-RX pairs. In this way, we can extract the fine breath frequency component for the breath rate estimation. Extensive experiments are conducted to demonstrate the superiority of the proposed scheme to the existing state of the arts.</description><subject>Antennas</subject><subject>Breath signals</subject><subject>channel state information (CSI)</subject><subject>Estimation</subject><subject>Fuses</subject><subject>Periodic variations</subject><subject>Principal components analysis</subject><subject>Receiving antennas</subject><subject>Sensors</subject><subject>Sleep apnea</subject><subject>sleep monitoring</subject><subject>WiFi</subject><subject>Wireless fidelity</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4HnrzGbTJBdB--EHRYUqegvZ7KymtE2b3Qr993ZpD57mZXjeGXgYu0ToIYK-eZ6OXnoZZLzHOWjF9RHroBAqRZmr4zZzSHMuv07ZWV3PAFBLITvs9i3UvvFhmY4jUXIfyTY_yZAacu02GW6iX34n0znRKvn1NhmExSKUvtkmn37sz9lJZec1XRxml32MR--Dx3Ty-vA0uJukLtN5k3ILCmxeSKV4pQsnQeiK-k4RaoUotcaS98mJfoE5CKsKXVpXKu04WJTAu-x6f3cVw3pDdWNmYROXu5cmU1IJUCj5jsI95WKo60iVWUW_sHFrEEyrybSaTKvJHDTtOlf7jieif3zGVS6Q_wFeamIx</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Zhuo, Hongyang</creator><creator>Wu, Xianda</creator><creator>Zhong, Qinghua</creator><creator>Zhang, Han</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5677-967X</orcidid><orcidid>https://orcid.org/0000-0002-4037-3026</orcidid><orcidid>https://orcid.org/0000-0002-5438-7242</orcidid><orcidid>https://orcid.org/0000-0001-6985-1610</orcidid></search><sort><creationdate>20231015</creationdate><title>Position-Free Breath Detection During Sleep via Commodity WiFi</title><author>Zhuo, Hongyang ; Wu, Xianda ; Zhong, Qinghua ; Zhang, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3a080a4b7883f9bc7059fe6c8e198117991d36ec56b1405a8b9dacd89c30a1703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antennas</topic><topic>Breath signals</topic><topic>channel state information (CSI)</topic><topic>Estimation</topic><topic>Fuses</topic><topic>Periodic variations</topic><topic>Principal components analysis</topic><topic>Receiving antennas</topic><topic>Sensors</topic><topic>Sleep apnea</topic><topic>sleep monitoring</topic><topic>WiFi</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Hongyang</creatorcontrib><creatorcontrib>Wu, Xianda</creatorcontrib><creatorcontrib>Zhong, Qinghua</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo, Hongyang</au><au>Wu, Xianda</au><au>Zhong, Qinghua</au><au>Zhang, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Position-Free Breath Detection During Sleep via Commodity WiFi</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-10-15</date><risdate>2023</risdate><volume>23</volume><issue>20</issue><spage>24874</spage><epage>24884</epage><pages>24874-24884</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In recent years, contactless sleep breath detection using WiFi signals has gained significant attention. In this article, we present a position-free breath detection system that utilizes the channel state information (CSI) from a pair of WiFi devices. To address the "blind-spot" issue, we propose a robust detection method that takes advantage of both the amplitude and phase of the CSI ratio, ensuring comprehensive coverage for breath detection. We also utilize the periodicity and variability features to select the most suitable breath pattern from the resulting signals. To mitigate the noise interference in nonideal sleep positions, we propose a novel principal component analysis-variational mode decomposition (PCA-VMD) fusion method to fully exploit the complementary advantage of sensing over different TX-RX pairs. In this way, we can extract the fine breath frequency component for the breath rate estimation. Extensive experiments are conducted to demonstrate the superiority of the proposed scheme to the existing state of the arts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3309839</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5677-967X</orcidid><orcidid>https://orcid.org/0000-0002-4037-3026</orcidid><orcidid>https://orcid.org/0000-0002-5438-7242</orcidid><orcidid>https://orcid.org/0000-0001-6985-1610</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-10, Vol.23 (20), p.24874-24884 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2878508173 |
source | IEEE Electronic Library (IEL) |
subjects | Antennas Breath signals channel state information (CSI) Estimation Fuses Periodic variations Principal components analysis Receiving antennas Sensors Sleep apnea sleep monitoring WiFi Wireless fidelity |
title | Position-Free Breath Detection During Sleep via Commodity WiFi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Position-Free%20Breath%20Detection%20During%20Sleep%20via%20Commodity%20WiFi&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhuo,%20Hongyang&rft.date=2023-10-15&rft.volume=23&rft.issue=20&rft.spage=24874&rft.epage=24884&rft.pages=24874-24884&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3309839&rft_dat=%3Cproquest_RIE%3E2878508173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878508173&rft_id=info:pmid/&rft_ieee_id=10238451&rfr_iscdi=true |