Direction-Independent Human Activity Recognition Using a Distributed MIMO Radar System and Deep Learning

Modern monostatic radar-based human activity recognition (HAR) systems perform very well as long as the direction of human activities is either toward or away from the radar. The monostatic single-input-single-output (SISO) and monostatic multiple-input-multiple-output (MIMO) radar systems cannot de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-10, Vol.23 (20), p.24916-24929
Hauptverfasser: Waqar, Sahil, Muaaz, Muhammad, Patzold, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24929
container_issue 20
container_start_page 24916
container_title IEEE sensors journal
container_volume 23
creator Waqar, Sahil
Muaaz, Muhammad
Patzold, Matthias
description Modern monostatic radar-based human activity recognition (HAR) systems perform very well as long as the direction of human activities is either toward or away from the radar. The monostatic single-input-single-output (SISO) and monostatic multiple-input-multiple-output (MIMO) radar systems cannot detect motion of an object that moves perpendicularly to the radar's boresight axis. Due to this physical layer limitation, today's radar-based HAR systems fail to classify multidirectional human activities. In this article, we resolve this typical but critical physical layer problem of contemporary HAR systems. We propose a HAR system underlying a distributed MIMO radar configuration, where multiple antennas of a millimeter wave (mm-wave) MIMO radar system (Ancortek SDR-KIT 2400T2R4) are distributed in an indoor environment. In our proposed HAR system, we have two independent and identical monostatic radar subsystems that irradiate and capture the multidirectional human movement from two perspectives, which allows to compute two distinct time-variant (TV) radial velocity distributions. A feature extraction network extracts numerous features from the measured TV radial velocity distributions, which are then fused by a multiclass classifier to detect five types of human activities. The proposed multiperspective MIMO-radar-based HAR system achieves a classification accuracy of 98.52%, which surpasses the accuracy of SISO radar-based HAR system by more than 9%. Our approach resolves the physical layer limitations of modern HAR systems that are based on either monostatic SISO or monostatic MIMO radar systems.
doi_str_mv 10.1109/JSEN.2023.3310620
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878507729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10242342</ieee_id><sourcerecordid>2878507729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8cc99194ea58973c4eb164c392c936c9468050e382a142d836121435fd4d65673</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRsFZ_gOAh4HlrvnaTHEtbbaW10FrwtqTZaU2x2TXJCv337lIPwjATyPPOwJMk9wQPCMHq6XU9eRtQTNmAMYJzii-SHskymRLB5WX3ZjjlTHxcJzchHDAmSmSil3yOrQcTbeXSmSuhhra5iKbNUTs0bD9-bDyhFZhq72yHoU2wbo80GtsQvd02EUq0mC2WaKVL7dH6FCIckXYlGgPUaA7auzZxm1zt9FeAu7_ZTzbPk_fRNJ0vX2aj4Tw1jImYSmOUIoqDzqQSzHDYkpwbpqhRLDeK5xJnGJikmnBaSpYTSjjLdiUv8ywXrJ88nvfWvvpuIMTiUDXetScLKoXMsBBUtRQ5U8ZXIXjYFbW3R-1PBcFFJ7TohBad0OJPaJt5OGcsAPzjKaesrV93a3Bv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878507729</pqid></control><display><type>article</type><title>Direction-Independent Human Activity Recognition Using a Distributed MIMO Radar System and Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Waqar, Sahil ; Muaaz, Muhammad ; Patzold, Matthias</creator><creatorcontrib>Waqar, Sahil ; Muaaz, Muhammad ; Patzold, Matthias</creatorcontrib><description>Modern monostatic radar-based human activity recognition (HAR) systems perform very well as long as the direction of human activities is either toward or away from the radar. The monostatic single-input-single-output (SISO) and monostatic multiple-input-multiple-output (MIMO) radar systems cannot detect motion of an object that moves perpendicularly to the radar's boresight axis. Due to this physical layer limitation, today's radar-based HAR systems fail to classify multidirectional human activities. In this article, we resolve this typical but critical physical layer problem of contemporary HAR systems. We propose a HAR system underlying a distributed MIMO radar configuration, where multiple antennas of a millimeter wave (mm-wave) MIMO radar system (Ancortek SDR-KIT 2400T2R4) are distributed in an indoor environment. In our proposed HAR system, we have two independent and identical monostatic radar subsystems that irradiate and capture the multidirectional human movement from two perspectives, which allows to compute two distinct time-variant (TV) radial velocity distributions. A feature extraction network extracts numerous features from the measured TV radial velocity distributions, which are then fused by a multiclass classifier to detect five types of human activities. The proposed multiperspective MIMO-radar-based HAR system achieves a classification accuracy of 98.52%, which surpasses the accuracy of SISO radar-based HAR system by more than 9%. Our approach resolves the physical layer limitations of modern HAR systems that are based on either monostatic SISO or monostatic MIMO radar systems.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3310620</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boresights ; Deep learning ; direction-independent human activity recognition (HAR) ; fall detection ; Feature extraction ; feature fusion ; Human activity recognition ; Human motion ; Indoor environments ; Machine learning ; Millimeter waves ; MIMO communication ; MIMO radar ; multistatic radar ; multiview radar sensing ; Object motion ; orientation-independent HAR ; Radar ; Radar equipment ; Radar systems ; Radial velocity ; Sensors ; Subsystems</subject><ispartof>IEEE sensors journal, 2023-10, Vol.23 (20), p.24916-24929</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8cc99194ea58973c4eb164c392c936c9468050e382a142d836121435fd4d65673</citedby><cites>FETCH-LOGICAL-c337t-8cc99194ea58973c4eb164c392c936c9468050e382a142d836121435fd4d65673</cites><orcidid>0000-0003-4553-114X ; 0000-0001-5225-1926 ; 0000-0002-6859-5413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10242342$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Waqar, Sahil</creatorcontrib><creatorcontrib>Muaaz, Muhammad</creatorcontrib><creatorcontrib>Patzold, Matthias</creatorcontrib><title>Direction-Independent Human Activity Recognition Using a Distributed MIMO Radar System and Deep Learning</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Modern monostatic radar-based human activity recognition (HAR) systems perform very well as long as the direction of human activities is either toward or away from the radar. The monostatic single-input-single-output (SISO) and monostatic multiple-input-multiple-output (MIMO) radar systems cannot detect motion of an object that moves perpendicularly to the radar's boresight axis. Due to this physical layer limitation, today's radar-based HAR systems fail to classify multidirectional human activities. In this article, we resolve this typical but critical physical layer problem of contemporary HAR systems. We propose a HAR system underlying a distributed MIMO radar configuration, where multiple antennas of a millimeter wave (mm-wave) MIMO radar system (Ancortek SDR-KIT 2400T2R4) are distributed in an indoor environment. In our proposed HAR system, we have two independent and identical monostatic radar subsystems that irradiate and capture the multidirectional human movement from two perspectives, which allows to compute two distinct time-variant (TV) radial velocity distributions. A feature extraction network extracts numerous features from the measured TV radial velocity distributions, which are then fused by a multiclass classifier to detect five types of human activities. The proposed multiperspective MIMO-radar-based HAR system achieves a classification accuracy of 98.52%, which surpasses the accuracy of SISO radar-based HAR system by more than 9%. Our approach resolves the physical layer limitations of modern HAR systems that are based on either monostatic SISO or monostatic MIMO radar systems.</description><subject>Boresights</subject><subject>Deep learning</subject><subject>direction-independent human activity recognition (HAR)</subject><subject>fall detection</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Indoor environments</subject><subject>Machine learning</subject><subject>Millimeter waves</subject><subject>MIMO communication</subject><subject>MIMO radar</subject><subject>multistatic radar</subject><subject>multiview radar sensing</subject><subject>Object motion</subject><subject>orientation-independent HAR</subject><subject>Radar</subject><subject>Radar equipment</subject><subject>Radar systems</subject><subject>Radial velocity</subject><subject>Sensors</subject><subject>Subsystems</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhhdRsFZ_gOAh4HlrvnaTHEtbbaW10FrwtqTZaU2x2TXJCv337lIPwjATyPPOwJMk9wQPCMHq6XU9eRtQTNmAMYJzii-SHskymRLB5WX3ZjjlTHxcJzchHDAmSmSil3yOrQcTbeXSmSuhhra5iKbNUTs0bD9-bDyhFZhq72yHoU2wbo80GtsQvd02EUq0mC2WaKVL7dH6FCIckXYlGgPUaA7auzZxm1zt9FeAu7_ZTzbPk_fRNJ0vX2aj4Tw1jImYSmOUIoqDzqQSzHDYkpwbpqhRLDeK5xJnGJikmnBaSpYTSjjLdiUv8ywXrJ88nvfWvvpuIMTiUDXetScLKoXMsBBUtRQ5U8ZXIXjYFbW3R-1PBcFFJ7TohBad0OJPaJt5OGcsAPzjKaesrV93a3Bv</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Waqar, Sahil</creator><creator>Muaaz, Muhammad</creator><creator>Patzold, Matthias</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4553-114X</orcidid><orcidid>https://orcid.org/0000-0001-5225-1926</orcidid><orcidid>https://orcid.org/0000-0002-6859-5413</orcidid></search><sort><creationdate>20231015</creationdate><title>Direction-Independent Human Activity Recognition Using a Distributed MIMO Radar System and Deep Learning</title><author>Waqar, Sahil ; Muaaz, Muhammad ; Patzold, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8cc99194ea58973c4eb164c392c936c9468050e382a142d836121435fd4d65673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boresights</topic><topic>Deep learning</topic><topic>direction-independent human activity recognition (HAR)</topic><topic>fall detection</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Indoor environments</topic><topic>Machine learning</topic><topic>Millimeter waves</topic><topic>MIMO communication</topic><topic>MIMO radar</topic><topic>multistatic radar</topic><topic>multiview radar sensing</topic><topic>Object motion</topic><topic>orientation-independent HAR</topic><topic>Radar</topic><topic>Radar equipment</topic><topic>Radar systems</topic><topic>Radial velocity</topic><topic>Sensors</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waqar, Sahil</creatorcontrib><creatorcontrib>Muaaz, Muhammad</creatorcontrib><creatorcontrib>Patzold, Matthias</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waqar, Sahil</au><au>Muaaz, Muhammad</au><au>Patzold, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direction-Independent Human Activity Recognition Using a Distributed MIMO Radar System and Deep Learning</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-10-15</date><risdate>2023</risdate><volume>23</volume><issue>20</issue><spage>24916</spage><epage>24929</epage><pages>24916-24929</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Modern monostatic radar-based human activity recognition (HAR) systems perform very well as long as the direction of human activities is either toward or away from the radar. The monostatic single-input-single-output (SISO) and monostatic multiple-input-multiple-output (MIMO) radar systems cannot detect motion of an object that moves perpendicularly to the radar's boresight axis. Due to this physical layer limitation, today's radar-based HAR systems fail to classify multidirectional human activities. In this article, we resolve this typical but critical physical layer problem of contemporary HAR systems. We propose a HAR system underlying a distributed MIMO radar configuration, where multiple antennas of a millimeter wave (mm-wave) MIMO radar system (Ancortek SDR-KIT 2400T2R4) are distributed in an indoor environment. In our proposed HAR system, we have two independent and identical monostatic radar subsystems that irradiate and capture the multidirectional human movement from two perspectives, which allows to compute two distinct time-variant (TV) radial velocity distributions. A feature extraction network extracts numerous features from the measured TV radial velocity distributions, which are then fused by a multiclass classifier to detect five types of human activities. The proposed multiperspective MIMO-radar-based HAR system achieves a classification accuracy of 98.52%, which surpasses the accuracy of SISO radar-based HAR system by more than 9%. Our approach resolves the physical layer limitations of modern HAR systems that are based on either monostatic SISO or monostatic MIMO radar systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3310620</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4553-114X</orcidid><orcidid>https://orcid.org/0000-0001-5225-1926</orcidid><orcidid>https://orcid.org/0000-0002-6859-5413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-10, Vol.23 (20), p.24916-24929
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2878507729
source IEEE Electronic Library (IEL)
subjects Boresights
Deep learning
direction-independent human activity recognition (HAR)
fall detection
Feature extraction
feature fusion
Human activity recognition
Human motion
Indoor environments
Machine learning
Millimeter waves
MIMO communication
MIMO radar
multistatic radar
multiview radar sensing
Object motion
orientation-independent HAR
Radar
Radar equipment
Radar systems
Radial velocity
Sensors
Subsystems
title Direction-Independent Human Activity Recognition Using a Distributed MIMO Radar System and Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direction-Independent%20Human%20Activity%20Recognition%20Using%20a%20Distributed%20MIMO%20Radar%20System%20and%20Deep%20Learning&rft.jtitle=IEEE%20sensors%20journal&rft.au=Waqar,%20Sahil&rft.date=2023-10-15&rft.volume=23&rft.issue=20&rft.spage=24916&rft.epage=24929&rft.pages=24916-24929&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3310620&rft_dat=%3Cproquest_cross%3E2878507729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878507729&rft_id=info:pmid/&rft_ieee_id=10242342&rfr_iscdi=true