CarExpert: Leveraging Large Language Models for In-Car Conversational Question Answering

Large language models (LLMs) have demonstrated remarkable performance by following natural language instructions without fine-tuning them on domain-specific tasks and data. However, leveraging LLMs for domain-specific question answering suffers from severe limitations. The generated answer tends to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Md Rashad Al Hasan Rony, Suess, Christian, Sinchana Ramakanth Bhat, Sudhi, Viju, Schneider, Julia, Vogel, Maximilian, Teucher, Roman, Friedl, Ken E, Sahoo, Soumya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Md Rashad Al Hasan Rony
Suess, Christian
Sinchana Ramakanth Bhat
Sudhi, Viju
Schneider, Julia
Vogel, Maximilian
Teucher, Roman
Friedl, Ken E
Sahoo, Soumya
description Large language models (LLMs) have demonstrated remarkable performance by following natural language instructions without fine-tuning them on domain-specific tasks and data. However, leveraging LLMs for domain-specific question answering suffers from severe limitations. The generated answer tends to hallucinate due to the training data collection time (when using off-the-shelf), complex user utterance and wrong retrieval (in retrieval-augmented generation). Furthermore, due to the lack of awareness about the domain and expected output, such LLMs may generate unexpected and unsafe answers that are not tailored to the target domain. In this paper, we propose CarExpert, an in-car retrieval-augmented conversational question-answering system leveraging LLMs for different tasks. Specifically, CarExpert employs LLMs to control the input, provide domain-specific documents to the extractive and generative answering components, and controls the output to ensure safe and domain-specific answers. A comprehensive empirical evaluation exhibits that CarExpert outperforms state-of-the-art LLMs in generating natural, safe and car-specific answers.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878371883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878371883</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783718833</originalsourceid><addsrcrecordid>eNqNjMEKgkAURYcgSMp_GGgt6Ezm0C7EKLBF0MKdDPQcFJmx97T6_EboA9rcexfn3AULhJRJpHZCrFhI1MVxLPaZSFMZsCrXWHwGwPHAS3gBatNaw0uNBnxaM2k_ru4BPfHGIb_YyCs8d9bDpMfWWd3z2wQ0T3609Ab0Fxu2bHRPEP56zban4p6fowHdc6brzk3oXaqFypTMEqWk_I_6Al7FQbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878371883</pqid></control><display><type>article</type><title>CarExpert: Leveraging Large Language Models for In-Car Conversational Question Answering</title><source>Free E- Journals</source><creator>Md Rashad Al Hasan Rony ; Suess, Christian ; Sinchana Ramakanth Bhat ; Sudhi, Viju ; Schneider, Julia ; Vogel, Maximilian ; Teucher, Roman ; Friedl, Ken E ; Sahoo, Soumya</creator><creatorcontrib>Md Rashad Al Hasan Rony ; Suess, Christian ; Sinchana Ramakanth Bhat ; Sudhi, Viju ; Schneider, Julia ; Vogel, Maximilian ; Teucher, Roman ; Friedl, Ken E ; Sahoo, Soumya</creatorcontrib><description>Large language models (LLMs) have demonstrated remarkable performance by following natural language instructions without fine-tuning them on domain-specific tasks and data. However, leveraging LLMs for domain-specific question answering suffers from severe limitations. The generated answer tends to hallucinate due to the training data collection time (when using off-the-shelf), complex user utterance and wrong retrieval (in retrieval-augmented generation). Furthermore, due to the lack of awareness about the domain and expected output, such LLMs may generate unexpected and unsafe answers that are not tailored to the target domain. In this paper, we propose CarExpert, an in-car retrieval-augmented conversational question-answering system leveraging LLMs for different tasks. Specifically, CarExpert employs LLMs to control the input, provide domain-specific documents to the extractive and generative answering components, and controls the output to ensure safe and domain-specific answers. A comprehensive empirical evaluation exhibits that CarExpert outperforms state-of-the-art LLMs in generating natural, safe and car-specific answers.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data collection ; Large language models ; Questions ; Retrieval</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Md Rashad Al Hasan Rony</creatorcontrib><creatorcontrib>Suess, Christian</creatorcontrib><creatorcontrib>Sinchana Ramakanth Bhat</creatorcontrib><creatorcontrib>Sudhi, Viju</creatorcontrib><creatorcontrib>Schneider, Julia</creatorcontrib><creatorcontrib>Vogel, Maximilian</creatorcontrib><creatorcontrib>Teucher, Roman</creatorcontrib><creatorcontrib>Friedl, Ken E</creatorcontrib><creatorcontrib>Sahoo, Soumya</creatorcontrib><title>CarExpert: Leveraging Large Language Models for In-Car Conversational Question Answering</title><title>arXiv.org</title><description>Large language models (LLMs) have demonstrated remarkable performance by following natural language instructions without fine-tuning them on domain-specific tasks and data. However, leveraging LLMs for domain-specific question answering suffers from severe limitations. The generated answer tends to hallucinate due to the training data collection time (when using off-the-shelf), complex user utterance and wrong retrieval (in retrieval-augmented generation). Furthermore, due to the lack of awareness about the domain and expected output, such LLMs may generate unexpected and unsafe answers that are not tailored to the target domain. In this paper, we propose CarExpert, an in-car retrieval-augmented conversational question-answering system leveraging LLMs for different tasks. Specifically, CarExpert employs LLMs to control the input, provide domain-specific documents to the extractive and generative answering components, and controls the output to ensure safe and domain-specific answers. A comprehensive empirical evaluation exhibits that CarExpert outperforms state-of-the-art LLMs in generating natural, safe and car-specific answers.</description><subject>Data collection</subject><subject>Large language models</subject><subject>Questions</subject><subject>Retrieval</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKgkAURYcgSMp_GGgt6Ezm0C7EKLBF0MKdDPQcFJmx97T6_EboA9rcexfn3AULhJRJpHZCrFhI1MVxLPaZSFMZsCrXWHwGwPHAS3gBatNaw0uNBnxaM2k_ru4BPfHGIb_YyCs8d9bDpMfWWd3z2wQ0T3609Ab0Fxu2bHRPEP56zban4p6fowHdc6brzk3oXaqFypTMEqWk_I_6Al7FQbk</recordid><startdate>20231014</startdate><enddate>20231014</enddate><creator>Md Rashad Al Hasan Rony</creator><creator>Suess, Christian</creator><creator>Sinchana Ramakanth Bhat</creator><creator>Sudhi, Viju</creator><creator>Schneider, Julia</creator><creator>Vogel, Maximilian</creator><creator>Teucher, Roman</creator><creator>Friedl, Ken E</creator><creator>Sahoo, Soumya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231014</creationdate><title>CarExpert: Leveraging Large Language Models for In-Car Conversational Question Answering</title><author>Md Rashad Al Hasan Rony ; Suess, Christian ; Sinchana Ramakanth Bhat ; Sudhi, Viju ; Schneider, Julia ; Vogel, Maximilian ; Teucher, Roman ; Friedl, Ken E ; Sahoo, Soumya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783718833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data collection</topic><topic>Large language models</topic><topic>Questions</topic><topic>Retrieval</topic><toplevel>online_resources</toplevel><creatorcontrib>Md Rashad Al Hasan Rony</creatorcontrib><creatorcontrib>Suess, Christian</creatorcontrib><creatorcontrib>Sinchana Ramakanth Bhat</creatorcontrib><creatorcontrib>Sudhi, Viju</creatorcontrib><creatorcontrib>Schneider, Julia</creatorcontrib><creatorcontrib>Vogel, Maximilian</creatorcontrib><creatorcontrib>Teucher, Roman</creatorcontrib><creatorcontrib>Friedl, Ken E</creatorcontrib><creatorcontrib>Sahoo, Soumya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Md Rashad Al Hasan Rony</au><au>Suess, Christian</au><au>Sinchana Ramakanth Bhat</au><au>Sudhi, Viju</au><au>Schneider, Julia</au><au>Vogel, Maximilian</au><au>Teucher, Roman</au><au>Friedl, Ken E</au><au>Sahoo, Soumya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CarExpert: Leveraging Large Language Models for In-Car Conversational Question Answering</atitle><jtitle>arXiv.org</jtitle><date>2023-10-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Large language models (LLMs) have demonstrated remarkable performance by following natural language instructions without fine-tuning them on domain-specific tasks and data. However, leveraging LLMs for domain-specific question answering suffers from severe limitations. The generated answer tends to hallucinate due to the training data collection time (when using off-the-shelf), complex user utterance and wrong retrieval (in retrieval-augmented generation). Furthermore, due to the lack of awareness about the domain and expected output, such LLMs may generate unexpected and unsafe answers that are not tailored to the target domain. In this paper, we propose CarExpert, an in-car retrieval-augmented conversational question-answering system leveraging LLMs for different tasks. Specifically, CarExpert employs LLMs to control the input, provide domain-specific documents to the extractive and generative answering components, and controls the output to ensure safe and domain-specific answers. A comprehensive empirical evaluation exhibits that CarExpert outperforms state-of-the-art LLMs in generating natural, safe and car-specific answers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2878371883
source Free E- Journals
subjects Data collection
Large language models
Questions
Retrieval
title CarExpert: Leveraging Large Language Models for In-Car Conversational Question Answering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CarExpert:%20Leveraging%20Large%20Language%20Models%20for%20In-Car%20Conversational%20Question%20Answering&rft.jtitle=arXiv.org&rft.au=Md%20Rashad%20Al%20Hasan%20Rony&rft.date=2023-10-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878371883%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878371883&rft_id=info:pmid/&rfr_iscdi=true