Effective electrical manipulation of topological antiferromagnet by orbital Hall effect
Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zheng, Zhenyi Zeng, Tao Zhao, Tieyang Shi, Shu Ren, Lizhu Zhang, Tongtong Jia, Lanxin Gu, Youdi Xiao, Rui Zhou, Hengan Zhang, Qihan Lu, Jiaqi Wang, Guilei Zhao, Chao Li, Huihui Beng Kang Tay Chen, Jingsheng |
description | Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, we demonstrate effective manipulation of antiferromagnetic order in Weyl semimetal Mn3Sn by orbital Hall effect originated from metal Mn or oxide CuOx. While Mn3Sn is proven to be able to convert orbit current to spin current by itself, we find that inserting a heavy metal layer like Pt with proper thickness can effectively reduce the critical switching current density by one order of magnitude. In addition, we show that the memristor-like switching behavior of Mn3Sn can mimic the potentiation and depression processes of a synapse with high linearity, which is beneficial for constructing artificial neural network with high accuracy. Our work paves an alternative way to manipulate topological antiferromagnetic order and may inspire more high-performance antiferromagnetic functional devices. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878363627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878363627</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783636273</originalsourceid><addsrcrecordid>eNqNzE0KwjAUBOAgCBbtHQKuCzWxP3up9ACCy5KWl5KS5tXkRfD2luIBXM3AN8yOJULKS1ZfhTiwNIQpz3NRVqIoZMKejdYwkHkDB7sWbwZl-aycWaJVZNBx1JxwQYvjZsqR0eA9zmp0QLz_cPS9oZVaZS2H7fDE9lrZAOkvj-x8bx63Nls8viIE6iaM3q3UibqqZSlLUcn_Vl_e-UKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878363627</pqid></control><display><type>article</type><title>Effective electrical manipulation of topological antiferromagnet by orbital Hall effect</title><source>Free E- Journals</source><creator>Zheng, Zhenyi ; Zeng, Tao ; Zhao, Tieyang ; Shi, Shu ; Ren, Lizhu ; Zhang, Tongtong ; Jia, Lanxin ; Gu, Youdi ; Xiao, Rui ; Zhou, Hengan ; Zhang, Qihan ; Lu, Jiaqi ; Wang, Guilei ; Zhao, Chao ; Li, Huihui ; Beng Kang Tay ; Chen, Jingsheng</creator><creatorcontrib>Zheng, Zhenyi ; Zeng, Tao ; Zhao, Tieyang ; Shi, Shu ; Ren, Lizhu ; Zhang, Tongtong ; Jia, Lanxin ; Gu, Youdi ; Xiao, Rui ; Zhou, Hengan ; Zhang, Qihan ; Lu, Jiaqi ; Wang, Guilei ; Zhao, Chao ; Li, Huihui ; Beng Kang Tay ; Chen, Jingsheng</creatorcontrib><description>Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, we demonstrate effective manipulation of antiferromagnetic order in Weyl semimetal Mn3Sn by orbital Hall effect originated from metal Mn or oxide CuOx. While Mn3Sn is proven to be able to convert orbit current to spin current by itself, we find that inserting a heavy metal layer like Pt with proper thickness can effectively reduce the critical switching current density by one order of magnitude. In addition, we show that the memristor-like switching behavior of Mn3Sn can mimic the potentiation and depression processes of a synapse with high linearity, which is beneficial for constructing artificial neural network with high accuracy. Our work paves an alternative way to manipulate topological antiferromagnetic order and may inspire more high-performance antiferromagnetic functional devices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Artificial neural networks ; Electromagnetism ; Electrons ; Hall effect ; Heavy metals ; Spintronics ; Switching ; Topology</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zheng, Zhenyi</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Zhao, Tieyang</creatorcontrib><creatorcontrib>Shi, Shu</creatorcontrib><creatorcontrib>Ren, Lizhu</creatorcontrib><creatorcontrib>Zhang, Tongtong</creatorcontrib><creatorcontrib>Jia, Lanxin</creatorcontrib><creatorcontrib>Gu, Youdi</creatorcontrib><creatorcontrib>Xiao, Rui</creatorcontrib><creatorcontrib>Zhou, Hengan</creatorcontrib><creatorcontrib>Zhang, Qihan</creatorcontrib><creatorcontrib>Lu, Jiaqi</creatorcontrib><creatorcontrib>Wang, Guilei</creatorcontrib><creatorcontrib>Zhao, Chao</creatorcontrib><creatorcontrib>Li, Huihui</creatorcontrib><creatorcontrib>Beng Kang Tay</creatorcontrib><creatorcontrib>Chen, Jingsheng</creatorcontrib><title>Effective electrical manipulation of topological antiferromagnet by orbital Hall effect</title><title>arXiv.org</title><description>Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, we demonstrate effective manipulation of antiferromagnetic order in Weyl semimetal Mn3Sn by orbital Hall effect originated from metal Mn or oxide CuOx. While Mn3Sn is proven to be able to convert orbit current to spin current by itself, we find that inserting a heavy metal layer like Pt with proper thickness can effectively reduce the critical switching current density by one order of magnitude. In addition, we show that the memristor-like switching behavior of Mn3Sn can mimic the potentiation and depression processes of a synapse with high linearity, which is beneficial for constructing artificial neural network with high accuracy. Our work paves an alternative way to manipulate topological antiferromagnetic order and may inspire more high-performance antiferromagnetic functional devices.</description><subject>Antiferromagnetism</subject><subject>Artificial neural networks</subject><subject>Electromagnetism</subject><subject>Electrons</subject><subject>Hall effect</subject><subject>Heavy metals</subject><subject>Spintronics</subject><subject>Switching</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzE0KwjAUBOAgCBbtHQKuCzWxP3up9ACCy5KWl5KS5tXkRfD2luIBXM3AN8yOJULKS1ZfhTiwNIQpz3NRVqIoZMKejdYwkHkDB7sWbwZl-aycWaJVZNBx1JxwQYvjZsqR0eA9zmp0QLz_cPS9oZVaZS2H7fDE9lrZAOkvj-x8bx63Nls8viIE6iaM3q3UibqqZSlLUcn_Vl_e-UKM</recordid><startdate>20231014</startdate><enddate>20231014</enddate><creator>Zheng, Zhenyi</creator><creator>Zeng, Tao</creator><creator>Zhao, Tieyang</creator><creator>Shi, Shu</creator><creator>Ren, Lizhu</creator><creator>Zhang, Tongtong</creator><creator>Jia, Lanxin</creator><creator>Gu, Youdi</creator><creator>Xiao, Rui</creator><creator>Zhou, Hengan</creator><creator>Zhang, Qihan</creator><creator>Lu, Jiaqi</creator><creator>Wang, Guilei</creator><creator>Zhao, Chao</creator><creator>Li, Huihui</creator><creator>Beng Kang Tay</creator><creator>Chen, Jingsheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231014</creationdate><title>Effective electrical manipulation of topological antiferromagnet by orbital Hall effect</title><author>Zheng, Zhenyi ; Zeng, Tao ; Zhao, Tieyang ; Shi, Shu ; Ren, Lizhu ; Zhang, Tongtong ; Jia, Lanxin ; Gu, Youdi ; Xiao, Rui ; Zhou, Hengan ; Zhang, Qihan ; Lu, Jiaqi ; Wang, Guilei ; Zhao, Chao ; Li, Huihui ; Beng Kang Tay ; Chen, Jingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783636273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiferromagnetism</topic><topic>Artificial neural networks</topic><topic>Electromagnetism</topic><topic>Electrons</topic><topic>Hall effect</topic><topic>Heavy metals</topic><topic>Spintronics</topic><topic>Switching</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zhenyi</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Zhao, Tieyang</creatorcontrib><creatorcontrib>Shi, Shu</creatorcontrib><creatorcontrib>Ren, Lizhu</creatorcontrib><creatorcontrib>Zhang, Tongtong</creatorcontrib><creatorcontrib>Jia, Lanxin</creatorcontrib><creatorcontrib>Gu, Youdi</creatorcontrib><creatorcontrib>Xiao, Rui</creatorcontrib><creatorcontrib>Zhou, Hengan</creatorcontrib><creatorcontrib>Zhang, Qihan</creatorcontrib><creatorcontrib>Lu, Jiaqi</creatorcontrib><creatorcontrib>Wang, Guilei</creatorcontrib><creatorcontrib>Zhao, Chao</creatorcontrib><creatorcontrib>Li, Huihui</creatorcontrib><creatorcontrib>Beng Kang Tay</creatorcontrib><creatorcontrib>Chen, Jingsheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Zhenyi</au><au>Zeng, Tao</au><au>Zhao, Tieyang</au><au>Shi, Shu</au><au>Ren, Lizhu</au><au>Zhang, Tongtong</au><au>Jia, Lanxin</au><au>Gu, Youdi</au><au>Xiao, Rui</au><au>Zhou, Hengan</au><au>Zhang, Qihan</au><au>Lu, Jiaqi</au><au>Wang, Guilei</au><au>Zhao, Chao</au><au>Li, Huihui</au><au>Beng Kang Tay</au><au>Chen, Jingsheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Effective electrical manipulation of topological antiferromagnet by orbital Hall effect</atitle><jtitle>arXiv.org</jtitle><date>2023-10-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, we demonstrate effective manipulation of antiferromagnetic order in Weyl semimetal Mn3Sn by orbital Hall effect originated from metal Mn or oxide CuOx. While Mn3Sn is proven to be able to convert orbit current to spin current by itself, we find that inserting a heavy metal layer like Pt with proper thickness can effectively reduce the critical switching current density by one order of magnitude. In addition, we show that the memristor-like switching behavior of Mn3Sn can mimic the potentiation and depression processes of a synapse with high linearity, which is beneficial for constructing artificial neural network with high accuracy. Our work paves an alternative way to manipulate topological antiferromagnetic order and may inspire more high-performance antiferromagnetic functional devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2878363627 |
source | Free E- Journals |
subjects | Antiferromagnetism Artificial neural networks Electromagnetism Electrons Hall effect Heavy metals Spintronics Switching Topology |
title | Effective electrical manipulation of topological antiferromagnet by orbital Hall effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Effective%20electrical%20manipulation%20of%20topological%20antiferromagnet%20by%20orbital%20Hall%20effect&rft.jtitle=arXiv.org&rft.au=Zheng,%20Zhenyi&rft.date=2023-10-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878363627%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878363627&rft_id=info:pmid/&rfr_iscdi=true |