Effective electrical manipulation of topological antiferromagnet by orbital Hall effect

Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Zheng, Zhenyi, Zeng, Tao, Zhao, Tieyang, Shi, Shu, Ren, Lizhu, Zhang, Tongtong, Jia, Lanxin, Gu, Youdi, Xiao, Rui, Zhou, Hengan, Zhang, Qihan, Lu, Jiaqi, Wang, Guilei, Zhao, Chao, Li, Huihui, Beng Kang Tay, Chen, Jingsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zheng, Zhenyi
Zeng, Tao
Zhao, Tieyang
Shi, Shu
Ren, Lizhu
Zhang, Tongtong
Jia, Lanxin
Gu, Youdi
Xiao, Rui
Zhou, Hengan
Zhang, Qihan
Lu, Jiaqi
Wang, Guilei
Zhao, Chao
Li, Huihui
Beng Kang Tay
Chen, Jingsheng
description Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, we demonstrate effective manipulation of antiferromagnetic order in Weyl semimetal Mn3Sn by orbital Hall effect originated from metal Mn or oxide CuOx. While Mn3Sn is proven to be able to convert orbit current to spin current by itself, we find that inserting a heavy metal layer like Pt with proper thickness can effectively reduce the critical switching current density by one order of magnitude. In addition, we show that the memristor-like switching behavior of Mn3Sn can mimic the potentiation and depression processes of a synapse with high linearity, which is beneficial for constructing artificial neural network with high accuracy. Our work paves an alternative way to manipulate topological antiferromagnetic order and may inspire more high-performance antiferromagnetic functional devices.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878363627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878363627</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783636273</originalsourceid><addsrcrecordid>eNqNzE0KwjAUBOAgCBbtHQKuCzWxP3up9ACCy5KWl5KS5tXkRfD2luIBXM3AN8yOJULKS1ZfhTiwNIQpz3NRVqIoZMKejdYwkHkDB7sWbwZl-aycWaJVZNBx1JxwQYvjZsqR0eA9zmp0QLz_cPS9oZVaZS2H7fDE9lrZAOkvj-x8bx63Nls8viIE6iaM3q3UibqqZSlLUcn_Vl_e-UKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878363627</pqid></control><display><type>article</type><title>Effective electrical manipulation of topological antiferromagnet by orbital Hall effect</title><source>Free E- Journals</source><creator>Zheng, Zhenyi ; Zeng, Tao ; Zhao, Tieyang ; Shi, Shu ; Ren, Lizhu ; Zhang, Tongtong ; Jia, Lanxin ; Gu, Youdi ; Xiao, Rui ; Zhou, Hengan ; Zhang, Qihan ; Lu, Jiaqi ; Wang, Guilei ; Zhao, Chao ; Li, Huihui ; Beng Kang Tay ; Chen, Jingsheng</creator><creatorcontrib>Zheng, Zhenyi ; Zeng, Tao ; Zhao, Tieyang ; Shi, Shu ; Ren, Lizhu ; Zhang, Tongtong ; Jia, Lanxin ; Gu, Youdi ; Xiao, Rui ; Zhou, Hengan ; Zhang, Qihan ; Lu, Jiaqi ; Wang, Guilei ; Zhao, Chao ; Li, Huihui ; Beng Kang Tay ; Chen, Jingsheng</creatorcontrib><description>Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, we demonstrate effective manipulation of antiferromagnetic order in Weyl semimetal Mn3Sn by orbital Hall effect originated from metal Mn or oxide CuOx. While Mn3Sn is proven to be able to convert orbit current to spin current by itself, we find that inserting a heavy metal layer like Pt with proper thickness can effectively reduce the critical switching current density by one order of magnitude. In addition, we show that the memristor-like switching behavior of Mn3Sn can mimic the potentiation and depression processes of a synapse with high linearity, which is beneficial for constructing artificial neural network with high accuracy. Our work paves an alternative way to manipulate topological antiferromagnetic order and may inspire more high-performance antiferromagnetic functional devices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Artificial neural networks ; Electromagnetism ; Electrons ; Hall effect ; Heavy metals ; Spintronics ; Switching ; Topology</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zheng, Zhenyi</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Zhao, Tieyang</creatorcontrib><creatorcontrib>Shi, Shu</creatorcontrib><creatorcontrib>Ren, Lizhu</creatorcontrib><creatorcontrib>Zhang, Tongtong</creatorcontrib><creatorcontrib>Jia, Lanxin</creatorcontrib><creatorcontrib>Gu, Youdi</creatorcontrib><creatorcontrib>Xiao, Rui</creatorcontrib><creatorcontrib>Zhou, Hengan</creatorcontrib><creatorcontrib>Zhang, Qihan</creatorcontrib><creatorcontrib>Lu, Jiaqi</creatorcontrib><creatorcontrib>Wang, Guilei</creatorcontrib><creatorcontrib>Zhao, Chao</creatorcontrib><creatorcontrib>Li, Huihui</creatorcontrib><creatorcontrib>Beng Kang Tay</creatorcontrib><creatorcontrib>Chen, Jingsheng</creatorcontrib><title>Effective electrical manipulation of topological antiferromagnet by orbital Hall effect</title><title>arXiv.org</title><description>Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, we demonstrate effective manipulation of antiferromagnetic order in Weyl semimetal Mn3Sn by orbital Hall effect originated from metal Mn or oxide CuOx. While Mn3Sn is proven to be able to convert orbit current to spin current by itself, we find that inserting a heavy metal layer like Pt with proper thickness can effectively reduce the critical switching current density by one order of magnitude. In addition, we show that the memristor-like switching behavior of Mn3Sn can mimic the potentiation and depression processes of a synapse with high linearity, which is beneficial for constructing artificial neural network with high accuracy. Our work paves an alternative way to manipulate topological antiferromagnetic order and may inspire more high-performance antiferromagnetic functional devices.</description><subject>Antiferromagnetism</subject><subject>Artificial neural networks</subject><subject>Electromagnetism</subject><subject>Electrons</subject><subject>Hall effect</subject><subject>Heavy metals</subject><subject>Spintronics</subject><subject>Switching</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzE0KwjAUBOAgCBbtHQKuCzWxP3up9ACCy5KWl5KS5tXkRfD2luIBXM3AN8yOJULKS1ZfhTiwNIQpz3NRVqIoZMKejdYwkHkDB7sWbwZl-aycWaJVZNBx1JxwQYvjZsqR0eA9zmp0QLz_cPS9oZVaZS2H7fDE9lrZAOkvj-x8bx63Nls8viIE6iaM3q3UibqqZSlLUcn_Vl_e-UKM</recordid><startdate>20231014</startdate><enddate>20231014</enddate><creator>Zheng, Zhenyi</creator><creator>Zeng, Tao</creator><creator>Zhao, Tieyang</creator><creator>Shi, Shu</creator><creator>Ren, Lizhu</creator><creator>Zhang, Tongtong</creator><creator>Jia, Lanxin</creator><creator>Gu, Youdi</creator><creator>Xiao, Rui</creator><creator>Zhou, Hengan</creator><creator>Zhang, Qihan</creator><creator>Lu, Jiaqi</creator><creator>Wang, Guilei</creator><creator>Zhao, Chao</creator><creator>Li, Huihui</creator><creator>Beng Kang Tay</creator><creator>Chen, Jingsheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231014</creationdate><title>Effective electrical manipulation of topological antiferromagnet by orbital Hall effect</title><author>Zheng, Zhenyi ; Zeng, Tao ; Zhao, Tieyang ; Shi, Shu ; Ren, Lizhu ; Zhang, Tongtong ; Jia, Lanxin ; Gu, Youdi ; Xiao, Rui ; Zhou, Hengan ; Zhang, Qihan ; Lu, Jiaqi ; Wang, Guilei ; Zhao, Chao ; Li, Huihui ; Beng Kang Tay ; Chen, Jingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783636273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiferromagnetism</topic><topic>Artificial neural networks</topic><topic>Electromagnetism</topic><topic>Electrons</topic><topic>Hall effect</topic><topic>Heavy metals</topic><topic>Spintronics</topic><topic>Switching</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zhenyi</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Zhao, Tieyang</creatorcontrib><creatorcontrib>Shi, Shu</creatorcontrib><creatorcontrib>Ren, Lizhu</creatorcontrib><creatorcontrib>Zhang, Tongtong</creatorcontrib><creatorcontrib>Jia, Lanxin</creatorcontrib><creatorcontrib>Gu, Youdi</creatorcontrib><creatorcontrib>Xiao, Rui</creatorcontrib><creatorcontrib>Zhou, Hengan</creatorcontrib><creatorcontrib>Zhang, Qihan</creatorcontrib><creatorcontrib>Lu, Jiaqi</creatorcontrib><creatorcontrib>Wang, Guilei</creatorcontrib><creatorcontrib>Zhao, Chao</creatorcontrib><creatorcontrib>Li, Huihui</creatorcontrib><creatorcontrib>Beng Kang Tay</creatorcontrib><creatorcontrib>Chen, Jingsheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Zhenyi</au><au>Zeng, Tao</au><au>Zhao, Tieyang</au><au>Shi, Shu</au><au>Ren, Lizhu</au><au>Zhang, Tongtong</au><au>Jia, Lanxin</au><au>Gu, Youdi</au><au>Xiao, Rui</au><au>Zhou, Hengan</au><au>Zhang, Qihan</au><au>Lu, Jiaqi</au><au>Wang, Guilei</au><au>Zhao, Chao</au><au>Li, Huihui</au><au>Beng Kang Tay</au><au>Chen, Jingsheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Effective electrical manipulation of topological antiferromagnet by orbital Hall effect</atitle><jtitle>arXiv.org</jtitle><date>2023-10-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Electrical control of the non-trivial topology in Weyl antiferromagnet is of great interests to develop next-generation spintronic devices. Recent works suggest that spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, we demonstrate effective manipulation of antiferromagnetic order in Weyl semimetal Mn3Sn by orbital Hall effect originated from metal Mn or oxide CuOx. While Mn3Sn is proven to be able to convert orbit current to spin current by itself, we find that inserting a heavy metal layer like Pt with proper thickness can effectively reduce the critical switching current density by one order of magnitude. In addition, we show that the memristor-like switching behavior of Mn3Sn can mimic the potentiation and depression processes of a synapse with high linearity, which is beneficial for constructing artificial neural network with high accuracy. Our work paves an alternative way to manipulate topological antiferromagnetic order and may inspire more high-performance antiferromagnetic functional devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2878363627
source Free E- Journals
subjects Antiferromagnetism
Artificial neural networks
Electromagnetism
Electrons
Hall effect
Heavy metals
Spintronics
Switching
Topology
title Effective electrical manipulation of topological antiferromagnet by orbital Hall effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Effective%20electrical%20manipulation%20of%20topological%20antiferromagnet%20by%20orbital%20Hall%20effect&rft.jtitle=arXiv.org&rft.au=Zheng,%20Zhenyi&rft.date=2023-10-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878363627%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878363627&rft_id=info:pmid/&rfr_iscdi=true