Pareto Optimization to Accelerate Multi-Objective Virtual Screening
The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fromer, Jenna C Graff, David E Coley, Connor W |
description | The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by prior work that uses active learning to accelerate the identification of strong binders, we implement multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual screening and apply it to the identification of ligands predicted to be selective based on docking scores to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and associated open source software can reduce the screening burden of molecular design projects and is complementary to research aiming to improve the accuracy of binding predictions and other molecular properties. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878358808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878358808</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783588083</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_EHAuxMTYrFIUF6mguJYYnpISk5q8OPj1dvADnI7jbkIKLsSqUmvOZ6RMqWeM8U3NpRQFaU46AgbaDmif9qPRBk9H3xoDDqJGoMfs0FbtrQeD9g30aiNm7ejZRABv_WNBpnftEpQ_zslyv7s0h2qI4ZUhYdeHHP2YOq5qJaRSTIn_ri8fkzqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878358808</pqid></control><display><type>article</type><title>Pareto Optimization to Accelerate Multi-Objective Virtual Screening</title><source>Freely Accessible Journals</source><creator>Fromer, Jenna C ; Graff, David E ; Coley, Connor W</creator><creatorcontrib>Fromer, Jenna C ; Graff, David E ; Coley, Connor W</creatorcontrib><description>The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by prior work that uses active learning to accelerate the identification of strong binders, we implement multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual screening and apply it to the identification of ligands predicted to be selective based on docking scores to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and associated open source software can reduce the screening burden of molecular design projects and is complementary to research aiming to improve the accuracy of binding predictions and other molecular properties.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binding ; Libraries ; Molecular properties ; Multiple objective analysis ; Open source software ; Optimization ; Pareto optimization ; Screening ; Virtual libraries ; Workflow</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fromer, Jenna C</creatorcontrib><creatorcontrib>Graff, David E</creatorcontrib><creatorcontrib>Coley, Connor W</creatorcontrib><title>Pareto Optimization to Accelerate Multi-Objective Virtual Screening</title><title>arXiv.org</title><description>The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by prior work that uses active learning to accelerate the identification of strong binders, we implement multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual screening and apply it to the identification of ligands predicted to be selective based on docking scores to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and associated open source software can reduce the screening burden of molecular design projects and is complementary to research aiming to improve the accuracy of binding predictions and other molecular properties.</description><subject>Binding</subject><subject>Libraries</subject><subject>Molecular properties</subject><subject>Multiple objective analysis</subject><subject>Open source software</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Screening</subject><subject>Virtual libraries</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAUAIMgWLT_EHAuxMTYrFIUF6mguJYYnpISk5q8OPj1dvADnI7jbkIKLsSqUmvOZ6RMqWeM8U3NpRQFaU46AgbaDmif9qPRBk9H3xoDDqJGoMfs0FbtrQeD9g30aiNm7ejZRABv_WNBpnftEpQ_zslyv7s0h2qI4ZUhYdeHHP2YOq5qJaRSTIn_ri8fkzqQ</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Fromer, Jenna C</creator><creator>Graff, David E</creator><creator>Coley, Connor W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231016</creationdate><title>Pareto Optimization to Accelerate Multi-Objective Virtual Screening</title><author>Fromer, Jenna C ; Graff, David E ; Coley, Connor W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783588083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding</topic><topic>Libraries</topic><topic>Molecular properties</topic><topic>Multiple objective analysis</topic><topic>Open source software</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Screening</topic><topic>Virtual libraries</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Fromer, Jenna C</creatorcontrib><creatorcontrib>Graff, David E</creatorcontrib><creatorcontrib>Coley, Connor W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fromer, Jenna C</au><au>Graff, David E</au><au>Coley, Connor W</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pareto Optimization to Accelerate Multi-Objective Virtual Screening</atitle><jtitle>arXiv.org</jtitle><date>2023-10-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by prior work that uses active learning to accelerate the identification of strong binders, we implement multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual screening and apply it to the identification of ligands predicted to be selective based on docking scores to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and associated open source software can reduce the screening burden of molecular design projects and is complementary to research aiming to improve the accuracy of binding predictions and other molecular properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2878358808 |
source | Freely Accessible Journals |
subjects | Binding Libraries Molecular properties Multiple objective analysis Open source software Optimization Pareto optimization Screening Virtual libraries Workflow |
title | Pareto Optimization to Accelerate Multi-Objective Virtual Screening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pareto%20Optimization%20to%20Accelerate%20Multi-Objective%20Virtual%20Screening&rft.jtitle=arXiv.org&rft.au=Fromer,%20Jenna%20C&rft.date=2023-10-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878358808%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878358808&rft_id=info:pmid/&rfr_iscdi=true |