Pareto Optimization to Accelerate Multi-Objective Virtual Screening

The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Fromer, Jenna C, Graff, David E, Coley, Connor W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fromer, Jenna C
Graff, David E
Coley, Connor W
description The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by prior work that uses active learning to accelerate the identification of strong binders, we implement multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual screening and apply it to the identification of ligands predicted to be selective based on docking scores to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and associated open source software can reduce the screening burden of molecular design projects and is complementary to research aiming to improve the accuracy of binding predictions and other molecular properties.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878358808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878358808</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783588083</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_EHAuxMTYrFIUF6mguJYYnpISk5q8OPj1dvADnI7jbkIKLsSqUmvOZ6RMqWeM8U3NpRQFaU46AgbaDmif9qPRBk9H3xoDDqJGoMfs0FbtrQeD9g30aiNm7ejZRABv_WNBpnftEpQ_zslyv7s0h2qI4ZUhYdeHHP2YOq5qJaRSTIn_ri8fkzqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878358808</pqid></control><display><type>article</type><title>Pareto Optimization to Accelerate Multi-Objective Virtual Screening</title><source>Freely Accessible Journals</source><creator>Fromer, Jenna C ; Graff, David E ; Coley, Connor W</creator><creatorcontrib>Fromer, Jenna C ; Graff, David E ; Coley, Connor W</creatorcontrib><description>The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by prior work that uses active learning to accelerate the identification of strong binders, we implement multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual screening and apply it to the identification of ligands predicted to be selective based on docking scores to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and associated open source software can reduce the screening burden of molecular design projects and is complementary to research aiming to improve the accuracy of binding predictions and other molecular properties.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binding ; Libraries ; Molecular properties ; Multiple objective analysis ; Open source software ; Optimization ; Pareto optimization ; Screening ; Virtual libraries ; Workflow</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fromer, Jenna C</creatorcontrib><creatorcontrib>Graff, David E</creatorcontrib><creatorcontrib>Coley, Connor W</creatorcontrib><title>Pareto Optimization to Accelerate Multi-Objective Virtual Screening</title><title>arXiv.org</title><description>The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by prior work that uses active learning to accelerate the identification of strong binders, we implement multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual screening and apply it to the identification of ligands predicted to be selective based on docking scores to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and associated open source software can reduce the screening burden of molecular design projects and is complementary to research aiming to improve the accuracy of binding predictions and other molecular properties.</description><subject>Binding</subject><subject>Libraries</subject><subject>Molecular properties</subject><subject>Multiple objective analysis</subject><subject>Open source software</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Screening</subject><subject>Virtual libraries</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAUAIMgWLT_EHAuxMTYrFIUF6mguJYYnpISk5q8OPj1dvADnI7jbkIKLsSqUmvOZ6RMqWeM8U3NpRQFaU46AgbaDmif9qPRBk9H3xoDDqJGoMfs0FbtrQeD9g30aiNm7ejZRABv_WNBpnftEpQ_zslyv7s0h2qI4ZUhYdeHHP2YOq5qJaRSTIn_ri8fkzqQ</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Fromer, Jenna C</creator><creator>Graff, David E</creator><creator>Coley, Connor W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231016</creationdate><title>Pareto Optimization to Accelerate Multi-Objective Virtual Screening</title><author>Fromer, Jenna C ; Graff, David E ; Coley, Connor W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783588083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding</topic><topic>Libraries</topic><topic>Molecular properties</topic><topic>Multiple objective analysis</topic><topic>Open source software</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Screening</topic><topic>Virtual libraries</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Fromer, Jenna C</creatorcontrib><creatorcontrib>Graff, David E</creatorcontrib><creatorcontrib>Coley, Connor W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fromer, Jenna C</au><au>Graff, David E</au><au>Coley, Connor W</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pareto Optimization to Accelerate Multi-Objective Virtual Screening</atitle><jtitle>arXiv.org</jtitle><date>2023-10-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by prior work that uses active learning to accelerate the identification of strong binders, we implement multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual screening and apply it to the identification of ligands predicted to be selective based on docking scores to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and associated open source software can reduce the screening burden of molecular design projects and is complementary to research aiming to improve the accuracy of binding predictions and other molecular properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2878358808
source Freely Accessible Journals
subjects Binding
Libraries
Molecular properties
Multiple objective analysis
Open source software
Optimization
Pareto optimization
Screening
Virtual libraries
Workflow
title Pareto Optimization to Accelerate Multi-Objective Virtual Screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pareto%20Optimization%20to%20Accelerate%20Multi-Objective%20Virtual%20Screening&rft.jtitle=arXiv.org&rft.au=Fromer,%20Jenna%20C&rft.date=2023-10-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878358808%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878358808&rft_id=info:pmid/&rfr_iscdi=true