Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design
This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nourian, Pirouz Azadi, Shervin Uijtendaal, Roy Bai, Nan |
description | This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while dealing with hundreds or thousands of small decisions. The core of the performance-based generative design paradigm is about making statistical or simulation-driven associations between these choices and consequences for mapping and navigating such a complex decision space. This chapter will discuss promising directions in Artificial Intelligence for augmenting decision-making processes in architectural design for mapping and navigating complex design spaces. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878321035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878321035</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783210353</originalsourceid><addsrcrecordid>eNqNjUsKwjAYhIMgWLR3CLguxMTa4q7U58Kd-1LaPzUlTWIent8IPYCrGWY-ZhYooYztsnJP6Qqlzo2EEHooaJ6zBPEqDBMoDz2u9WSCb73QqpX4BE4M6ogf4F-6F12MKmNkND8Aa44r6wUXnYjNPQ5IKQZQHWCh8BUU2Ah-YN7ZoCVvpYN01jXaXs7P-pYZq98BnG9GHWz8dQ0ti5LRHWE5-4_6AuKDR1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878321035</pqid></control><display><type>article</type><title>Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design</title><source>Free E- Journals</source><creator>Nourian, Pirouz ; Azadi, Shervin ; Uijtendaal, Roy ; Bai, Nan</creator><creatorcontrib>Nourian, Pirouz ; Azadi, Shervin ; Uijtendaal, Roy ; Bai, Nan</creatorcontrib><description>This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while dealing with hundreds or thousands of small decisions. The core of the performance-based generative design paradigm is about making statistical or simulation-driven associations between these choices and consequences for mapping and navigating such a complex decision space. This chapter will discuss promising directions in Artificial Intelligence for augmenting decision-making processes in architectural design for mapping and navigating complex design spaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Mapping</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Nourian, Pirouz</creatorcontrib><creatorcontrib>Azadi, Shervin</creatorcontrib><creatorcontrib>Uijtendaal, Roy</creatorcontrib><creatorcontrib>Bai, Nan</creatorcontrib><title>Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design</title><title>arXiv.org</title><description>This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while dealing with hundreds or thousands of small decisions. The core of the performance-based generative design paradigm is about making statistical or simulation-driven associations between these choices and consequences for mapping and navigating such a complex decision space. This chapter will discuss promising directions in Artificial Intelligence for augmenting decision-making processes in architectural design for mapping and navigating complex design spaces.</description><subject>Artificial intelligence</subject><subject>Mapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsKwjAYhIMgWLR3CLguxMTa4q7U58Kd-1LaPzUlTWIent8IPYCrGWY-ZhYooYztsnJP6Qqlzo2EEHooaJ6zBPEqDBMoDz2u9WSCb73QqpX4BE4M6ogf4F-6F12MKmNkND8Aa44r6wUXnYjNPQ5IKQZQHWCh8BUU2Ah-YN7ZoCVvpYN01jXaXs7P-pYZq98BnG9GHWz8dQ0ti5LRHWE5-4_6AuKDR1A</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Nourian, Pirouz</creator><creator>Azadi, Shervin</creator><creator>Uijtendaal, Roy</creator><creator>Bai, Nan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231013</creationdate><title>Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design</title><author>Nourian, Pirouz ; Azadi, Shervin ; Uijtendaal, Roy ; Bai, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783210353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Nourian, Pirouz</creatorcontrib><creatorcontrib>Azadi, Shervin</creatorcontrib><creatorcontrib>Uijtendaal, Roy</creatorcontrib><creatorcontrib>Bai, Nan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nourian, Pirouz</au><au>Azadi, Shervin</au><au>Uijtendaal, Roy</au><au>Bai, Nan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design</atitle><jtitle>arXiv.org</jtitle><date>2023-10-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while dealing with hundreds or thousands of small decisions. The core of the performance-based generative design paradigm is about making statistical or simulation-driven associations between these choices and consequences for mapping and navigating such a complex decision space. This chapter will discuss promising directions in Artificial Intelligence for augmenting decision-making processes in architectural design for mapping and navigating complex design spaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2878321035 |
source | Free E- Journals |
subjects | Artificial intelligence Mapping |
title | Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Augmented%20Computational%20Design:%20Methodical%20Application%20of%20Artificial%20Intelligence%20in%20Generative%20Design&rft.jtitle=arXiv.org&rft.au=Nourian,%20Pirouz&rft.date=2023-10-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878321035%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878321035&rft_id=info:pmid/&rfr_iscdi=true |