Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design

This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Nourian, Pirouz, Azadi, Shervin, Uijtendaal, Roy, Bai, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nourian, Pirouz
Azadi, Shervin
Uijtendaal, Roy
Bai, Nan
description This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while dealing with hundreds or thousands of small decisions. The core of the performance-based generative design paradigm is about making statistical or simulation-driven associations between these choices and consequences for mapping and navigating such a complex decision space. This chapter will discuss promising directions in Artificial Intelligence for augmenting decision-making processes in architectural design for mapping and navigating complex design spaces.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878321035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878321035</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783210353</originalsourceid><addsrcrecordid>eNqNjUsKwjAYhIMgWLR3CLguxMTa4q7U58Kd-1LaPzUlTWIent8IPYCrGWY-ZhYooYztsnJP6Qqlzo2EEHooaJ6zBPEqDBMoDz2u9WSCb73QqpX4BE4M6ogf4F-6F12MKmNkND8Aa44r6wUXnYjNPQ5IKQZQHWCh8BUU2Ah-YN7ZoCVvpYN01jXaXs7P-pYZq98BnG9GHWz8dQ0ti5LRHWE5-4_6AuKDR1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878321035</pqid></control><display><type>article</type><title>Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design</title><source>Free E- Journals</source><creator>Nourian, Pirouz ; Azadi, Shervin ; Uijtendaal, Roy ; Bai, Nan</creator><creatorcontrib>Nourian, Pirouz ; Azadi, Shervin ; Uijtendaal, Roy ; Bai, Nan</creatorcontrib><description>This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while dealing with hundreds or thousands of small decisions. The core of the performance-based generative design paradigm is about making statistical or simulation-driven associations between these choices and consequences for mapping and navigating such a complex decision space. This chapter will discuss promising directions in Artificial Intelligence for augmenting decision-making processes in architectural design for mapping and navigating complex design spaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Mapping</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Nourian, Pirouz</creatorcontrib><creatorcontrib>Azadi, Shervin</creatorcontrib><creatorcontrib>Uijtendaal, Roy</creatorcontrib><creatorcontrib>Bai, Nan</creatorcontrib><title>Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design</title><title>arXiv.org</title><description>This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while dealing with hundreds or thousands of small decisions. The core of the performance-based generative design paradigm is about making statistical or simulation-driven associations between these choices and consequences for mapping and navigating such a complex decision space. This chapter will discuss promising directions in Artificial Intelligence for augmenting decision-making processes in architectural design for mapping and navigating complex design spaces.</description><subject>Artificial intelligence</subject><subject>Mapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsKwjAYhIMgWLR3CLguxMTa4q7U58Kd-1LaPzUlTWIent8IPYCrGWY-ZhYooYztsnJP6Qqlzo2EEHooaJ6zBPEqDBMoDz2u9WSCb73QqpX4BE4M6ogf4F-6F12MKmNkND8Aa44r6wUXnYjNPQ5IKQZQHWCh8BUU2Ah-YN7ZoCVvpYN01jXaXs7P-pYZq98BnG9GHWz8dQ0ti5LRHWE5-4_6AuKDR1A</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Nourian, Pirouz</creator><creator>Azadi, Shervin</creator><creator>Uijtendaal, Roy</creator><creator>Bai, Nan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231013</creationdate><title>Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design</title><author>Nourian, Pirouz ; Azadi, Shervin ; Uijtendaal, Roy ; Bai, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783210353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Nourian, Pirouz</creatorcontrib><creatorcontrib>Azadi, Shervin</creatorcontrib><creatorcontrib>Uijtendaal, Roy</creatorcontrib><creatorcontrib>Bai, Nan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nourian, Pirouz</au><au>Azadi, Shervin</au><au>Uijtendaal, Roy</au><au>Bai, Nan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design</atitle><jtitle>arXiv.org</jtitle><date>2023-10-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while dealing with hundreds or thousands of small decisions. The core of the performance-based generative design paradigm is about making statistical or simulation-driven associations between these choices and consequences for mapping and navigating such a complex decision space. This chapter will discuss promising directions in Artificial Intelligence for augmenting decision-making processes in architectural design for mapping and navigating complex design spaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2878321035
source Free E- Journals
subjects Artificial intelligence
Mapping
title Augmented Computational Design: Methodical Application of Artificial Intelligence in Generative Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Augmented%20Computational%20Design:%20Methodical%20Application%20of%20Artificial%20Intelligence%20in%20Generative%20Design&rft.jtitle=arXiv.org&rft.au=Nourian,%20Pirouz&rft.date=2023-10-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878321035%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878321035&rft_id=info:pmid/&rfr_iscdi=true